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Abstract

The classical Donati theorem is used for characterizing smooth matrix fields as linearized strain tensor fields. In this Note, we
give several generalizations of this theorem, notably to matrix fields whose components are only in H−1. We then show that our
extensions of Donati’s theorem allow to reformulate in a novel fashion linearized three-dimensional elasticity problems as quadratic
minimization problems with the strains as the primary unknowns. To cite this article: C. Amrouche et al., C. R. Acad. Sci. Paris,
Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Nouvelles formulations de problèmes d’élasticité linéarisée, basées sur des généralisations du théorème de Donati. Le
théorème classique de Donati sert à caractériser les champs de matrices réguliers qui sont des champs de déformation linéarisés.
Dans cette Note, on donne plusieurs généralisations de ce théorème, en particulier à des champs de matrices dont les composantes
sont seulement dans H−1. On montre ensuite que de telles généralisations conduisent à de nouvelles formulations des problèmes
d’élasticité linéarisée tridimensionnelle, comme des problèmes de minimisation quadratique où les déformations sont les inconnues
principales. Pour citer cet article : C. Amrouche et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Notations and preliminaries

Latin indices vary in the set {1, 2, 3} and the summation convention with respect to repeated indices is used in
conjunction with this rule.

Let Ω be an open subset of R
3 and let x = (xi) designate a generic point in Ω . Partial derivative operators of

the first, second, and third order are then denoted ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj , and ∂ijk := ∂3/∂xi∂xj ∂xk . Spaces
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of functions, vector fields, and matrix fields, defined over Ω are respectively denoted by italic capitals, boldface
Roman capitals, and special Roman capitals. The subscript s appended to a special Roman capital denotes a space of
symmetric matrix fields. The notation D(Ω) denotes the space of functions that are infinitely differentiable in Ω and
have compact supports in Ω . The notation D′(Ω) denotes the space of distributions defined over Ω .

A domain in R
3 is a bounded, connected, open subset of R

3 with a Lipschitz-continuous boundary.
The detailed proofs of the results announced in this Note are given in [2].

2. Extensions of Donati’s theorem

Let Ω be an open subset in R
3. For any vector field v = (vi) ∈ D′(Ω), the linearized strain tensor field associated

with the vector field v is the symmetric matrix field ∇sv ∈ D
′
s(Ω) defined by

∇sv := 1

2

(∇vT + ∇v
)
,

or equivalently, by (∇sv)ij = 1
2 (∂ivj + ∂j vi). When Ω is connected, the kernel of the operator ∇s has the well-known

characterization

Ker∇s = {
v ∈ D′(Ω); ∇sv = 0 in D

′(Ω)
} = {

v = a + b ∧ idΩ ; a ∈ R
3, b ∈ R

3},
where idΩ denotes the identity mapping of the set Ω .

A first important property of the operator ∇s is given in the next theorem, which constitutes the H
m
s (Ω)-matrix

version of J.-L. Lions’ lemma.

Theorem 2.1. Let Ω be a domain in R
3 and let a vector field v ∈ D′(Ω) be such that ∇sv ∈ H

m
s (Ω) for some integer

m ∈ Z. Then v ∈ Hm+1(Ω).

The next theorem lists two properties of the operator ∇s , considered as acting from the space L2(Ω) into the space
H

−1
s (Ω). The proof relies on the H

−1
s (Ω)-matrix version of J.-L. Lions’ lemma (Theorem 2.1) and the closed graph

theorem, combined with an abstract result due to Peetre [9] and Tartar [10].

Theorem 2.2. Let Ω be a domain in R
3.

(a) The operator ∇s : L̇2(Ω) := L2(Ω)/Ker∇s → H
−1
s (Ω), where for any v̇ ∈ L̇2(Ω),∇s v̇ := ∇sw for any w ∈ v̇,

is an isomorphism from L̇2(Ω) onto Im∇s . Consequently, the space Im∇s is closed in H
−1
s (Ω).

(b) The dual operator of ∇s : L2(Ω) → H
−1
s (Ω) is −div : H1

0,s(Ω) → L2(Ω) and the dual operator of

∇s : L̇2(Ω) → H
−1
s (Ω) is −div : H1

0,s(Ω) → L̇2(Ω).

The two theorems above show that, indeed, the operator ∇s is the ‘matrix analog’ of the usual gradient operator
grad. More specifically, the implication established in Theorem 2.1 is the matrix analog of the ‘usual’ J.-L. Lions
lemma (see Duvaut and Lions [5, Chapter 3]), as extended by Amrouche and Girault [3, Proposition 2.10]): Let Ω

be a domain in R
3 and let a distribution v ∈ D′(Ω) be such that gradv ∈ Hm(Ω) for some integer m ∈ Z. Then

v ∈ Hm+1(Ω). Likewise, part (a) of Theorem 2.2 mimics that grad is an isomorphism from L2(Ω)/R onto its image
in H−1(Ω) (cf. Girault and Raviart [7, Corollary 2.4]) and part (b) mimics that the dual operator of grad :L2(Ω) →
H−1(Ω) is −div : H1

0(Ω) → L2(Ω).
The next theorem lists two properties of the operator ∇s , now considered as acting from H1

0(Ω) into L
2
s (Ω). Its

proof is similar to that of parts (a) and (b) of Theorem 2.2, and actually simpler since Ker∇s = {0} in this case.

Theorem 2.3. Let Ω be a domain in R
3.

(a) The operator ∇s : H1
0(Ω) → L

2
s (Ω) is an isomorphism from H1

0(Ω) onto Im∇s . Consequently, the space Im∇s

is closed in L
2
s (Ω).

(b) The dual operator of ∇s : H1
0(Ω) → L

2
s (Ω) is −div : L2

s (Ω) → H−1(Ω).

The operator ∇s can also be considered as acting from H1(Ω) into L
2
s (Ω), in which case similar arguments show

that the operator ∇s : H1(Ω)/Ker∇s → Im∇s is an isomorphism, so that Im∇s is again a closed subspace of L2
s (Ω).
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Interestingly, under the additional assumption that Ω is simply-connected, the space Im∇s can be given an explicit
characterization in this case, as

Im∇s = {
e = (eij ) ∈ L

2
s (Ω); ∂lj eik + ∂kiejl − ∂liejk − ∂kj eil = 0 in H−2(Ω)

}
,

thus providing another proof that Im∇s is closed in L
2
s (Ω) when the operator ∇s is considered as acting from H1(Ω)

into L
2
s (Ω). This characterization of Im∇s is due to Ciarlet and Ciarlet, Jr. [4] (for a different, and simpler, proof, see

[1] or [2]).
In what follows, CURL designates the matrix curl operator and e : s designates the matrix inner-product of two

matrices e and s of order three.
A.J.C.B. de Saint Venant announced in 1864 what is since then known as Saint Venant’s theorem: Let Ω be a

simply-connected open subset of R
3. Given a matrix field e ∈ C

2
s (Ω), there exists a vector field v ∈ C3(Ω) such that

e = ∇sv in Ω if CURLCURL e = 0 in Ω .
Then in 1890, L. Donati proved that, if Ω is an open subset of R

3 and a matrix field e ∈ C
2
s (Ω) satisfies∫

Ω
e : s dx = 0 for all s ∈ Ds(Ω) such that div s = 0 in Ω , then CURLCURL e = 0 in Ω . This result, known as

Donati’s theorem, thus provides, once combined with Saint Venant’s theorem, another characterization of symmetric
matrix fields as linearized strain tensor fields, at least for simply-connected open subsets Ω of R

3.
Donati’s theorem was generalized as follows by Ting [11] in 1974: If Ω is a domain and a tensor field e ∈ L

2
s (Ω)

satisfies
∫
Ω

e : s dx = 0 for all s ∈ Ds(Ω) such that div s = 0 in Ω , then there exists v ∈ H1(Ω) such that e = ∇sv in
L

2
s (Ω).

Then Moreau [8] showed in 1979 that Donati’s theorem holds even in the sense of distributions, according
to the following theorem, where Ω is now an arbitrary open subset of R3: If a tensor field e ∈ D′

s(Ω) satisfies

D′
s (Ω)〈e, s〉Ds (Ω) = 0 for all s ∈ Ds(Ω) such that div s = 0 in Ω, then there exists v ∈ D′(Ω) such that e = ∇sv in

the sense of distributions. Note that Ting’s and Moreau’s extensions do not require that Ω be simply-connected.
One objective of this Note is to provide further extensions of Donati’s theorem. To begin with, we obtain our first

extension of Donati’s theorem as a corollary to Theorem 2.2:

Theorem 2.4. Let Ω be a domain in R
3 and let there be given a matrix field e ∈ H

−1
s (Ω). Then there exists a vector

field v ∈ L2(Ω) such that e = ∇sv in H
−1
s (Ω) if and only if

H
−1
s (Ω)

〈e, s〉
H

1
0,s (Ω) = 0 for all s ∈ H

1
0,s (Ω) satisfying div s = 0 in L2(Ω).

All other vector fields ṽ ∈ L2(Ω) satisfying e = ∇s ṽ in H
−1
s (Ω) are of the form ṽ = v + a + b ∧ idΩ for some

vectors a ∈ R
3 and b ∈ R

3.

Proof. Since the dual operator of ∇s : L2(Ω) → H
−1
s (Ω) is −div : H1

0,s (Ω) → L2(Ω) and the space Im∇s is closed

in H
−1
s (Ω) (Theorem 2.2), the conclusion follows from Banach’s closed range theorem. That all other solutions ṽ of

the equation e = ∇s ṽ are of the form indicated above follows from the characterization of the space Ker∇s recalled
earlier. �

This extension of Donati’s theorem is the ‘matrix analog’ of a well-known characterization of vector fields as gra-
dients of scalar functions (see Girault and Raviart [7, Lemma 2.1]), where the operator grad and the spaces H−1(Ω)

and H1
0(Ω) are replaced by their matrix analogs ∇s and H

−1
s (Ω) and H

1
0,s (Ω).

We similarly obtain a second extension of Donati’s theorem, this time as a corollary to Theorem 2.3.

Theorem 2.5. Let Ω be a domain in R
3 and let there be given a matrix field e ∈ L

2
s (Ω). Then there exists a vector

field v ∈ H1
0(Ω) such that e = ∇sv in L

2
s (Ω) if and only if∫

Ω

e : s dx = 0 for all s ∈ L
2
s (Ω) satisfying div s = 0 in H−1(Ω).

If this is the case, the vector field v is unique.
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Proof. Since the dual operator of ∇s : H1
0(Ω) → L

2
s (Ω) is −div : L2

s (Ω) → H−1(Ω) and the space Im∇s is closed
in L

2
s (Ω) (Theorem 2.3), the existence of the vector field v again follows from Banach’s closed range theorem. That

Ker∇s = {0} in this case implies that such a vector field v is unique. �
Characterizations similar to Theorems 2.4 and 2.5 have been simultaneously obtained by Geymonat and Kra-

sucki [6], who also noticed that Theorem 2.4 can be extended to matrix fields e ∈ W
−1,p
s (Ω), 1 < p < ∞.

Finally, a third extension of Donati’s theorem can also be obtained that also constitutes an extension of Ting [11].
The proof given here is considerably simpler, however (especially when the domain Ω is not simply-connected).

Theorem 2.6. Let Ω be a domain in R
3 and let there be given a matrix field e ∈ L

2
s (Ω). Then there exists a vector

field v ∈ H1(Ω) such that e = ∇sv in L
2
s (Ω) if and only if∫

Ω

e : s dx = 0 for all s ∈ H
1
0,s (Ω) satisfying div s = 0 in L2(Ω).

All other vector fields v ∈ H1(Ω) satisfying e = ∇sv are of the form ṽ = v + a + b ∧ idΩ for some vectors a ∈ R
3

and b ∈ R
3.

Proof. Let e ∈ L2
s (Ω) be such that

∫
Ω

e : s dx = 0 for all s ∈ H
1
0,s (Ω) satisfying div s = 0 in L2(Ω). Since L2

s (Ω) ⊂
H

−1
s (Ω), Theorem 2.4 shows that there exists v ∈ L2(Ω) such that e = ∇sv, and thus the L

2
s (Ω)-matrix version of

J.-L. Lions’ lemma (Theorem 2.1) further shows that v ∈ H1(Ω). The other assertions are easily established. �
3. Another approach to linearized elasticity

Let Ω be a domain in R
3, now viewed as the reference configuration of a linearly elastic body. This body is

characterized by its elasticity tensor field A = (Aijkl), whose components Aijkl ∈ L∞(Ω) satisfy the symmetry re-
lations Aijkl = Ajikl = Aklij and are such that there exists a constant α > 0 such that A(x)t : t � αt : t for almost
all x ∈ Ω and all symmetric matrices t = (tij ) of order three, where (A(x)t)ij := Aijkl(x)tkl . The body is subjected
to applied body forces with density f ∈ L6/5(Ω). Finally, it is assumed that the linear form L ∈ L(H1(Ω);R) de-
fined by L(v) = ∫

Ω
f · v dx for all v ∈ H1(Ω) vanishes for all v ∈ Ker∇s , where ∇s is here considered to be acting

from H1(Ω) into L2
s (Ω). Then the corresponding pure traction problem of three-dimensional linearized elasticity

classically consist in finding u̇ ∈ Ḣ1(Ω) := H1(Ω)/Ker∇s such that

J (u̇) = inf
v̇∈Ḣ1(Ω)

J (v̇), where J (v̇) := 1

2

∫
Ω

A∇s v̇ : ∇s v̇ dx − L(v̇).

Thanks to Theorem 2.6, this problem can be recast as another quadratic minimization problem, this time with
ε := ∇s u̇ ∈ L

2
sym(Ω) as the primary unknown.

Theorem 3.1. Let Ω be a domain in R
3. Define the Hilbert space

E1(Ω) :=
{

e ∈ L
2
s (Ω);

∫
Ω

e : s dx = 0 for all s ∈ H
1
0,s(Ω) satisfying div s = 0 in L2(Ω)

}
,

and, for each e ∈ E1(Ω), let F 1(e) denote the unique element in the quotient space Ḣ1(Ω) that satisfies ∇sF 1(e) = e
(Theorem 2.6). Then the mapping F 1 : E1(Ω) → Ḣ1(Ω) defined in this fashion is an isomorphism between the Hilbert
spaces E1(Ω) and Ḣ1(Ω). Furthermore, the minimization problem: Find ε ∈ E1(Ω) such that

j1(ε) = inf
e∈E1(Ω)

j1(e), where j1(e) := 1

2

∫
Ω

Ae : e dx − L ◦ F 1(e),

has one and only one solution ε, and this solution satisfies ε = ∇s u̇, where u̇ is the unique minimizer of the functional
J in the space Ḣ1(Ω).
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Sketch of proof. By Theorem 2.6, the mapping F 1 is a bijection between the Hilbert spaces E1(Ω) and Ḣ1(Ω) and
it can be shown that its inverse is continuous. Hence F 1 : E1(Ω) → H1(Ω) is an isomorphism by the closed graph
theorem. The bilinear form (e, ẽ) ∈ E1(Ω) × E1(Ω) → ∫

Ω
Ae : ẽdx ∈ R and the linear form L ◦ F 1 : E1(Ω) → R

thus satisfy all the assumptions of the Lax–Milgram lemma. �
Note that, as shown in [2], the Korn inequality in the space H1(Ω) can be recovered as a simple corollary to

Theorem 5.1, which thus provides a new proof of this classical inequality.
Consider likewise the pure displacement problem of three-dimensional linearized elasticity, which classically con-

sists in finding u ∈ H1
0(Ω) such that

J (u) = inf
v∈H1

0(Ω)

J (v), where J (v) = 1

2

∫
Ω

A∇sv : ∇sv dx − L(v),

where again L(v) = ∫
Ω

f · v dx for some f ∈ L6/5(Ω). Thanks to Theorem 2.5, this problem can be again recast as
another quadratic minimization problem, this time with ε := ∇su ∈ L

2
s (Ω) as the primary unknown:

Theorem 3.2. Let Ω be a domain in R
3. Define the Hilbert space

E2(Ω) :=
{

e ∈ L
2
s (Ω);

∫
Ω

e : s dx = 0 for all s ∈ L
2
s (Ω) satisfying div s = 0 in H−1(Ω)

}
,

and, for each e ∈ E2(Ω), let F 2(e) denote the unique element in the space H1
0(Ω) that satisfies ∇sF 2(e) = e (The-

orem 2.5). Then the mapping F 2 : E2(Ω) → H1
0(Ω) defined in this fashion is an isomorphism between the Hilbert

spaces E2(Ω) and H1
0(Ω). Furthermore, the minimization problem: Find ε ∈ E2(Ω) such that

j2(ε) = inf
e∈E2(Ω)

j2(e), where j2(e) := 1

2

∫
Ω

Ae : e dx − L ◦ F 2(e),

has one and only one solution ε, and this solution satisfies ε = ∇su, where u is the unique minimizer of the functional
J in the space H1

0(Ω).

Note that each one of the three minimization problems found above can be in turn immediately recast as yet
another one, this time with the linearized stress tensor Aε as the primary unknown, since the elasticity tensor field A
is invertible almost everywhere in Ω .
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