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Abstract

Saint Venant’s theorem constitutes a classical characterization of smooth matrix fields as linearized strain tensor fields. This
theorem has been extended to matrix fields with components in L2 by the second author and P. Ciarlet, Jr. in 2005. One objective
of this Note is to further extend this characterization to matrix fields whose components are only in H−1. Another objective is
to demonstrate that Saint Venant’s theorem is in fact nothing but the matrix analog of Poincaré’s lemma. To cite this article:
C. Amrouche et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les conditions de compatibilité de Saint Venant et le lemme de Poincaré. Le théorème de Saint Venant constitue une
caractérisation classique de champs de matrices réguliers comme des champs de tenseurs de déformation linéarisés. Ce théorème
a été étendu aux champs de matrices avec des composantes dans L2 par le second auteur et P. Ciarlet, Jr. en 2005. Un objectif de
cette Note est d’étendre cette caractérisation aux champs de matrices dont les composantes sont seulement dans H−1. Un autre
objectif est de démontrer que le théorème de Saint Venant n’est autre que l’analogue matriciel du lemme de Poincaré. Pour citer
cet article : C. Amrouche et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Notations and preliminaries

Latin indices vary in the set {1, 2, 3} and the summation convention with respect to repeated indices is systemati-
cally used in conjunction with this rule.

Let V denote a normed vector space. The notation V ′ designates the dual space of V and V ′ 〈·, ·〉V denotes the
duality bracket between V ′ and V . Given a subspace W of V , the notation W 0 := {v′ ∈ V ′; V ′ 〈v′,w〉V = 0 for all
w ∈ W } designates the polar set of W .
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Let U and V denote two vector spaces and let A :U → V be a linear operator. Then KerA ⊂ U and ImA ⊂ V

respectively designate the kernel and the image of A.
Let Ω be an open subset of R

3 and let x = (xi) designate a generic point in Ω . Partial derivative operators of the
first, second, and third order are then denoted ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj , and ∂ijk := ∂3/∂xi∂xj ∂xk . The same
symbols also designate partial derivatives in the sense of distributions.

Spaces of functions, vector fields, and matrix fields, defined over Ω are respectively denoted by italic capitals,
boldface Roman capitals, and special Roman capitals. The subscript s appended to a special Roman capital denotes a
space of symmetric matrix fields.

The notations Cm(Ω), m � 0, and C∞(Ω) denote the usual spaces of continuously differentiable functions; the
notation D(Ω) denotes the space of functions that are infinitely differentiable in Ω and have compact supports in Ω .
The notation D′(Ω) denotes the space of distributions defined over Ω . The notations Hm(Ω), m ∈ Z, with H 0(Ω) =
L2(Ω), and H 1

0 (Ω) designate the usual Sobolev spaces.
The vector gradient operator grad :D′(Ω) → D′(Ω) is defined by (gradv)i := ∂iv for any v ∈ D′(Ω). The diver-

gence operator div : D′(Ω) → D′(Ω) is defined by div v =: ∂ivi for any v = (vi) ∈ D′(Ω). The vector curl operator
curl : D′(Ω) → D′(Ω) is defined by (curl v)i =: εijk∂j vk for any v = (vi) ∈ D′(Ω), where (εijk) denotes the orienta-
tion tensor. The matrix gradient operator ∇ : D′(Ω) → D

′(Ω) is defined by (∇v)ij := ∂j vi for any v = (vi) ∈ D′(Ω).

The vector divergence operator div : D′(Ω) → D′(Ω) is defined by (div e)i := ∂j eij for any e = (eij ) ∈ D
′(Ω). The

matrix Laplacian � : D′(Ω) → D
′(Ω) is defined by (�e)ij := �eij for any e = (eij ) ∈ D

′(Ω). The matrix curl oper-
ator CURL : D′(Ω) → D

′(Ω) is defined by

(CURL e)ij := εilk∂lejk for any e = (eij ) ∈ D
′(Ω).

For any vector field v = (vi) ∈ D′(Ω), the symmetric matrix field ∇sv ∈ D
′
s(Ω) is defined by

∇sv := 1

2

(∇vT + ∇v
)
,

or equivalently, by (∇sv)ij = 1
2 (∂ivj +∂j vi). When Ω is connected, the kernel of the operator ∇s has the well-known

characterization

Ker∇s = {
v ∈ D′(Ω); ∇sv = 0 in D

′(Ω)
} = {

v = a + b ∧ idΩ ; a ∈ R
3, b ∈ R

3},
where idΩ denotes the identity mapping of the set Ω .

A domain in R
3 is a bounded, connected, open subset of R

3 whose boundary is Lipschitz-continuous.
The detailed proofs of the results announced in this Note are given in [2].

2. The operator CURLCURL

Let Ω be an open subset of R
3. For any matrix field e = (eij ) ∈ D

′(Ω), the matrix field CURLCURL e ∈ D
′(Ω)

is defined by

CURLCURL e := CURL(CURL e),

or equivalently by (CURLCURL e)ij := εiklεjmn∂lnekm.

One objective of this Note is to show that the operator CURLCURL : D′
s(Ω) → D

′(Ω) defined in this fashion
is the ‘matrix analog’ of the ‘vector’ operator curl : D′(Ω) → D′(Ω). The next theorem, which lists some algebraic
properties of this operator, includes some identities that constitute a first contribution to this objective.

Theorem 2.1. Let Ω be any open subset of R
3. The operator CURLCURL possesses the following properties:

(a) For any matrix field e ∈ D
′
s(Ω),

CURLCURL e = (CURLCURL e)T in D
′(Ω),

div(CURLCURL e) = 0 in D′(Ω),

tr(CURLCURL e) = �(tr e) − div(div e) in D′(Ω).

(b) Given any matrix field e = (eij ) ∈ D
′
s(Ω), let

Rijkl(e) := ∂lj eik + ∂kiejl − ∂liejk − ∂kj eil in D′(Ω).
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Then each distribution Rijkl(e) that does not identically vanish is equal to some distribution (CURLCURL e)pq

for appropriate indices p and q, and conversely. Consequently, the eighty-one relations Rijkl(e) = 0 in D′(Ω) are
equivalent to the six relations (CURLCURL e)mn = 0 in D′(Ω),m � n, i.e., to CURLCURL e = 0 in D

′
s(Ω).

(c) For any vector field v ∈ D′(Ω), CURLCURL(∇sv) = 0 in D
′(Ω).

Sketch of proof. The relations of (a) and (c) are established by direct computations.
Let a matrix field e = (eij ) ∈ D

′
s(Ω) be given and let q = (qij ) := CURLCURL e. Then a direct computation

shows that q11 = R2323(e), q12 = R2331(e), q13 = R1223(e), q22 = R1313(e), q23 = R1312(e), q33 = R1212(e). Taking
also into account the relations Rijkl(e) = 0 if i = j or k = l,Rijkl(e) = Rklij (e) = −Rjikl(e) = −Rijlk(e), we thus
conclude that all the distributions Rijkl(e) that do not identically vanish are known if and only if the six ones appearing
above (i.e., R2323(e), . . . ,R1212(e)) are known. This proves (b). �

Note that the relations div(CURLCURL e) = 0 and CURLCURL(∇sv) = 0, which hold for arbitrary ma-
trix fields e ∈ D

′
s(Ω) and vector fields v ∈ D′(Ω), are indeed the ‘matrix analogs’ of the well-known relations

div(curl v) = 0 and curl(gradv) = 0, which hold for arbitrary vector fields v ∈ D′(Ω) and distributions v ∈ D′(Ω).

3. An extension of Saint Venant’s theorem

The following H
m
s (Ω)-matrix version of J.-L. Lions’ lemma, announced in [1] and proved in [2], plays a key role

in the sequel.

Theorem 3.1. Let Ω be a domain in R
3 and let a vector field v ∈ D′(Ω) be such that ∇sv ∈ H

m
s (Ω) for some integer

m ∈ Z. Then v ∈ Hm+1(Ω).

Let Ω be any open subset in R
3. Given any vector field v = (vi) ∈ D′(Ω), Theorem 2.1 shows that

CURLCURL(∇sv) = 0 in D
′
s(Ω), or equivalently, that the Saint Venant compatibility conditions Rijkl(∇sv) =

0 hold in D′(Ω). It has been known for a long time that the following converse, known as Saint Venant’s theorem,
holds for smooth enough matrix fields: Let Ω be a simply-connected open subset of R

3. Assume that, for some integer
m � 2, a matrix field e ∈ C

m
s (Ω) satisfies the relations Rijkl(e) = 0 in Ω . Then there exists a vector field v ∈ Cm+1(Ω)

such that e = ∇sv in Ω (although this result was announced by A.J.C.B. de Saint Venant in 1864, it was not until
1886 that E. Beltrami provided a rigorous proof ).

We now show that the same Saint Venant compatibility conditions Rijkl(e) = 0 remain sufficient in a much weaker
sense, according to the following Saint Venant’s theorem in H

−1
s (Ω).

Theorem 3.2. Let Ω be a simply-connected domain in R
3 and let e ∈ H

−1
s (Ω) be a matrix field that satisfies

CURLCURL e = 0 in H
−3
s (Ω). Then there exists a vector field v ∈ L2(Ω) that satisfies e = ∇sv in H

−1
s (Ω).

All other vector fields ṽ ∈ L2(Ω) satisfying e = ∇s ṽ in H
−1
s (Ω) are of the form ṽ = v + a + b ∧ idΩ for some

vectors a ∈ R
3 and b ∈ R

3.

Sketch of proof. One can show (see [1,2]) that −div : H1
0,s(Ω) → L̇2(Ω) = L2(Ω)/Ker∇s is the dual operator of

∇s : L̇2(Ω) → H
−1
s (Ω) and that the operator ∇s : L̇2(Ω) → Im∇s = V

0, where V := Ker(−div) ⊂ H
1
0,s(Ω), is an

isomorphism. Consequently, the operator −div : (V0)′ → L̇2(Ω) is also an isomorphism. Besides, the inclusion V
0 ⊂

H
−1
s (Ω) = (H1

0,s (Ω))′ implies that (V0)′ can be identified with a (closed) subspace of H
1
0,s(Ω). We thus reach two

conclusions. First, given any element v̇ ∈ L̇2(Ω), there exists a unique matrix field q(v̇) ∈ (V0)′ ⊂ H
1
0,s(Ω) such that

−div q(v̇) = v̇ in L̇2(Ω). Second, there exists a constant β > 0 such that β‖q(v̇)‖1,Ω � ‖v̇‖0,Ω for all v̇ ∈ L̇2(Ω).

(ii) Define two bilinear forms a : H1
0,s(Ω) × H

1
0,s (Ω) → R and b : L̇2(Ω) × H

1
0,s(Ω) → R by

a(q, r) :=
∫

Ω

∂kqij ∂krij dx for all (q, r) = (
(qij ), (rij )

) ∈ H
1
0,s(Ω) × H

1
0,s (Ω),

b(v̇,q) := −
∫

vi∂j qij dx for all (v̇,q) = (
(v̇i), (qij )

) ∈ L̇2(Ω) × H
1
0,s (Ω)
Ω
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(the bilinear form b is indeed unambiguously defined, because q is symmetric). Clearly, the two bilinear forms are
continuous and the bilinear form a is H

1
0,s (Ω)-elliptic. Furthermore, part (i) implies that the bilinear form b satisfies

the Babuška–Brezzi inf–sup condition. Consequently, given any element e ∈ H
−1
s (Ω), there exists a unique solution

(u̇,q) ∈ L̇2(Ω) × H
1
0,s(Ω) to the equations

a(q, r) + b(u̇, r) =
H

−1
s (Ω)

〈e, r〉
H

1
0,s (Ω) for all r ∈ H

1
0,s (Ω), and b(v̇,q) = 0 for all v̇ ∈ L̇2(Ω),

or equivalently, to the equations

−�q + ∇s u̇ = e in H
−1
s (Ω) and div q = 0 in L̇2(Ω).

(iii) Assume that the element e ∈ H
−1
s (Ω) appearing in the right-hand side of the penultimate equation satisfies in

addition CURLCURL e = 0 in H
−3
s (Ω), so that, by Theorem 2.1(c),

�(CURLCURL q) = CURLCURL(�q) = CURLCURL(∇s u̇ − e) = 0 in H
−3
s (Ω).

The hypoellipticity of the Laplacian (see, e.g., Dautray and Lions [4, Section 2 in Chapter 5]) then implies that
CURLCURL q ∈ C

∞
s (Ω), and Theorem 2.1(a) in turn shows that

�(tr q) = div(div q) + tr(CURLCURL q) = tr(CURLCURL q) ∈ C
∞(Ω).

Hence tr q ∈ C∞(Ω), again by the hypoellipticity of the Laplacian.
Using Theorem 2.1(b), we next infer that, for all indices i and k, Rilkl(q) = {�qik + ∂ik(tr q)} ∈ C∞(Ω), which

implies that �q ∈ C
∞
s (Ω).

Hence, if CURLCURL e = 0 in H
−3
s (Ω), the second argument q of the solution (u̇,q) ∈ L̇2(Ω) × H

1
0,s (Ω) to the

equations −�q + ∇s u̇ = e in H
−1
s (Ω) and div q = 0 in L̇2(Ω) satisfies

�q ∈ C
∞
s (Ω) and CURLCURL(�q) = 0 in Ω.

(iv) Since the matrix field �q ∈ C
∞
s (Ω) satisfies CURLCURL(�q) = 0 in the simply-connected open set Ω , the

classical Saint Venant theorem shows that there exists a vector field w ∈ C∞(Ω) such that �q = ∇sw in Ω (this is
the only place where the simple-connectedness of Ω is used).

The vector field w ∈ C∞(Ω) ⊂ D′(Ω) therefore satisfies ∇sw = {∇s u̇−e} ∈ H−1
s (Ω). Consequently, the H−1

s (Ω)-
matrix version of J.-L. Lions’ lemma (Theorem 3.1) shows that w ∈ L2(Ω). Hence v̇ := {u̇ − ẇ} ∈ L̇2(Ω) satisfies
e = ∇s v̇ in H

−1
s (Ω), which concludes the existence proof.

That all other solutions ṽ of the equation e = ∇s ṽ are of the form indicated above follows from the characterization
of the space Ker∇s recalled earlier. �

Note that the equations (encountered in part (ii) of the above proof) −�q + ∇s u̇ = e in H
−1
s (Ω) and div q =

0 in L̇2(Ω) constitute the ‘matrix analog’ of the familiar stationary Stokes problem. We recall that this problem
consists in finding a pair (ṗ,u) ∈ L̇2(Ω) × H1

0(Ω), where L̇2(Ω) := L2(Ω)/R, that satisfies the equations −ν�u +
grad ṗ = f in H−1(Ω) and div u = 0 in L̇2(Ω). This observation explains in particular why the existence theory used
in part (ii) resembles that used for the Stokes problem (see Girault and Raviart [7, Section 5.1]).

As expected, a Saint Venant’s theorem in L
2
s (Ω), i.e., similar to that of Theorem 3.2 but with a ‘shift by +1’ in the

regularities of both fields e and v, likewise holds:

Theorem 3.3. Let Ω be a simply-connected domain in R
3 and let e ∈ L

2
s (Ω) be a matrix field that satisfies

CURLCURL e = 0 in H−2
s (Ω). Then there exists a vector field v ∈ H1(Ω) that satisfies e = ∇sv in L2

s (Ω).

Proof. Since L
2
s (Ω) ⊂ H

−1
s (Ω), Theorem 3.2 shows that there exists v ∈ L2(Ω) such that e = ∇sv in L

2
s (Ω). Theo-

rem 3.1 then implies that v ∈ H1(Ω). �
Saint Venant’s theorem in L

2
s (Ω) is due to Ciarlet and Ciarlet, Jr. [3]. More recently, another proof of this result

was given by Geymonat and Krasucki [5]. See also Geymonat and Krasucki [6], who showed how Saint Venant’s
theorem in L2

s (Ω) can be extended to domains Ω that are not simply-connected by means of Beltrami’s functions.
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In Ciarlet and Ciarlet, Jr. [3], it is also shown how Saint Venant’s theorem in L
2
s (Ω) can be put to use so as

to provide another reformulation of the pure traction problem of linearized three-dimensional elasticity posed over
simply-connected domains, where the linearized strains (and consequently also the stresses since the constitutive
equation is invertible) are the primary unknowns.

4. Saint Venant’s theorem and Poincaré’s lemma

First, we emphasize that the Saint Venant theorem in H
−1
s (Ω) (Theorem 3.2) constitutes the matrix analog of

the Poincaré lemma in H−1(Ω), which takes the following form: Let Ω be a simply-connected domain in R
3. If a

vector field h ∈ H−1(Ω) satisfies curl h = 0 in H−2(Ω), then there exists a function p ∈ L2(Ω) such that h = gradp

(Poincaré’s lemma in H−1(Ω), which is due to Ciarlet and Ciarlet, Jr. [3], was later given a different and simpler proof
by Kesavan [8]). In other words, the ‘vector’ operators curl and grad appearing in Poincaré’s lemma are ‘replaced’
in Theorem 3.2 by their ‘matrix analogs’ CURLCURL and ∇s .

Second, we record the following equivalence, which is due to Kesavan [8]: Let Ω be a simply-connected domain
in R

3. Then the following statements are equivalent:
(a) If v ∈ D′(Ω) is such that gradv ∈ H−1(Ω), then v ∈ L2(Ω).
(b) If h ∈ H−1(Ω) satisfies curl h = 0 in H−2(Ω), then h = gradp for some p ∈ L2(Ω).
In other words, J.-L. Lions’ lemma in H−1(Ω) (statement (a)) is equivalent to Poincaré’s lemma in H−1(Ω)

(statement (b)).
We now show that, likewise, the H

−1
s (Ω)-matrix version of J.-L. Lions’ lemma (Theorem 3.1; statement (a) in the

next theorem) is equivalent to Saint Venant’s theorem in H
−1
s (Ω) (Theorem 3.2; statement (b) in the next theorem):

Theorem 4.1. Let Ω be a simply-connected domain in R
3. The following statements are equivalent:

(a) If w ∈ D′(Ω) satisfies ∇sw ∈ H
−1
s (Ω), then w ∈ L2(Ω).

(b) If e ∈ H
−1
s (Ω) satisfies CURLCURL e = 0 in H

−3
s (Ω), then e = ∇sv for some v ∈ L2(Ω).

Proof. Theorem 3.1 is used in part (iv) of the proof of Theorem 3.2. Hence (a) implies (b).
Assume next that (b) holds and let w ∈ D′(Ω) be such that ∇sw ∈ H

−1
s (Ω). Noting that CURLCURL(∇sw) = 0

by Theorem 3.1(c), we infer from (b) that ∇sw = ∇sv for some v ∈ L2(Ω). Hence (w − v) ∈ Ker∇s ⊂ L2(Ω) and
thus w ∈ L2(Ω). Hence (b) implies (a). �

Theorem 4.1 constitutes another evidence that Saint Venant theorem in H−1
s (Ω) is indeed the matrix analog of

Poincaré’s lemma in H−1(Ω).
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