
C. R. Acad. Sci. Paris, Ser. I 342 (2006) 883–886
http://france.elsevier.com/direct/CRASS1/

Numerical Analysis

Improved interface conditions for a non-overlapping domain
decomposition of a non-convex polygonal domain

Chokri Chniti a, Frédéric Nataf a, Francis Nier b

a CMAP, École polytechnique, 91128 Palaiseau cedex, France
b IRMAR, campus de Beaulieu, 35042 Rennes cedex, France

Received 7 November 2005; accepted after revision 14 March 2006

Available online 2 May 2006

Presented by Olivier Pironneau

Abstract

We propose a local improvement of domain decomposition methods which fits with the singularities occurring in the solutions
of elliptic equations in polygonal domains. This short presentation focuses on a model elliptic problem with the decomposition
of a non-convex polygonal domain into convex polygonal subdomains. After explaining the strategy and the theoretical design of
adapted interface conditions at the corner, we present numerical experiments which show that these new interface conditions satisfy
some optimality properties. To cite this article: C. Chniti et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Conditions d’interface améliorées pour une décomposition d’un domaine polygonal non convexe. Dans cette Note nous
proposons une amélioration locale des méthodes de décomposition de domaine adaptée aux singularités présentes dans les solutions
de problèmes elliptiques dans des domaines polygonaux. Cette courte présentation se limite à un problème elliptique modèle où
un domaine polygonal non convexe est décomposé en sous-domaines convexes. Après avoir brièvement présenté la stratégie et la
détermination théorique des conditions d’interface adaptées au coin, nous présentons des résultats numériques qui montrent que
ces nouvelles conditions d’interface vérifient des propriétés d’optimalité. Pour citer cet article : C. Chniti et al., C. R. Acad. Sci.
Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Domain decomposition methods are now well understood in the case of a regular domain decomposed into regular
subdomains, see for example [5]. A significant challenge for the applications is a good understanding of the singular
cases: problems with corners in 2D. The general principle of those methods is as follows: for an elliptic operator L,
a domain Ω and a given right-hand side f , consider the problem of finding u such that

Lu = f in Ω + B.C. on ∂Ω. (1)
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When the domain Ω is ‘large’, it can be decomposed into subdomains, �Ω = ⋃i=N
i=1 Ωi where Ωi is an open subdomain

of Ω . The initial problem (1) is then approximated by an iterative process:

⎧⎪⎨
⎪⎩

Lun+1
i = f in Ωi,

Bij γij u
n+1
i = Bijγiju

n
j on ∂Ωi ∩ Ωj (i �= j),

+B.C. on ∂Ωi ∩ ∂Ω

(2)

simultaneously for all i = 1, . . . ,N . The interface operators Bij can be differential or pseudodifferential operators.
The choice of the interface operators has a very great influence on the speed of convergence of the algorithm. Within
the framework of the regular interfaces, a good final choice actually relies on a compromise between the theoretical
optimality and the ease of implementation, see [2].

In a domain with a conical singularity (corner), it is known after Kondratiev [3] that even when the right-hand
side of (1) vanishes at infinite order at the corner the solution may have singularities or more generally a non-trivial
asymptotic expansion. Moreover, the first term of this asymptotic expansion at the corner depends strongly on the
operator L, the geometry which is reduced to the corner angle for first approximations, and the boundary conditions.
A priori the singularities in the subdomains Ωi , i = 1, . . . ,N , do not coincide with the ones of the whole domain Ω .
The diagnosis of a locally slower convergence of domain decomposition algorithm in the presence of conical singular-
ities in [4] invoked this bad matching. The present work again makes use of the flexibility in the choice of the interface
boundary conditions Bij , on which the singularities depend, in order to improve the convergence in such cases.

2. Interface conditions of order 2

Our approach consists in keeping the good interface conditions for smooth boundaries far from the corner with an
adaptation in the vicinity of the corner (see [1] for details). For a second order elliptic differential operator L, those
good second order interface conditions Bij have the form ∂

∂n
+ β − ∂

∂τ
(α

2
∂
∂τ

), with constants α,β ∈ R+ and where τ

denotes the tangential variable. For Ω = R
2 split into two half-planes, the choice of α and β is optimized according

to the mesh size h in the tangential direction which brings a natural upper bound for numerical frequencies. By
introducing en

i (x, τ ) = un
i − u and its Fourier transform in the tangential variable êi (x, k), the optimized coefficients

αopt, βopt > 0 are determined in [2] by the max-min principle

min
α,β∈R

max
|k|�π/h

∣∣ρ(k;α,β)
∣∣ (3)

with ρ(k;α,β) = êi
n+2(0,k)

êi
n(0,k)

. At a corner and by taking polar coordinates the boundary operator takes the form Bij =
∂

r∂θ
+ βopt − αopt

2
∂2

∂r2 . In the asymptotic r → 0, ∂
r∂θ

and ∂
∂r

are operators of order −1 and the principal part of Bij is

reduced to the last term −αopt
2

∂2

∂r2 . The absence of a normal derivative in this principal part means that asymptotically
the interface conditions behave like Dirichlet interface conditions and do not transmit well the information from one
subdomain to its neighboring ones. One way to solve this problem is by using at the corner an interface condition
like ∂

r∂θ
+ β1

r
− ∂

∂r
α1r
2

∂
∂r

where all the terms have the homogeneity order −1, see [4]. A synthesis is done by taking

Bij = ∂
r∂θ

+ β̃(r) − ∂
∂r

α̃(r)
2

∂
∂r

where

α̃(r) =

⎧⎪⎨
⎪⎩

α1r if r � αopt

α1
,

αopt if r � αopt

α1
,

and β̃(r) =

⎧⎪⎪⎨
⎪⎪⎩

β1
r

if r � β1

βopt
,

βopt if r � β1

βopt
,

(4)

with α1, β1 > 0. In a numerical implementation, the coefficients α1, β1 are such that the matching radius r0 =
min{αopt

α1
,

β1
βopt

} corresponds to three meshes of the discretized domain. This provides the first relation between α1

and β1.
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3. Theoretical determination of a good pair (α1,β1) in a subdomain for a model problem

The domain Ω is the sector Ω = {(r cos θ, r sin θ), r > 0, θ0 < θ < θ+}, with θ+ − θ0 ∈ (0,2π). Consider the
homogeneous Dirichlet problem

(η − �)u = f, u|θ=θ0 ≡ 0, u|θ=θ+ ≡ 0, (5)

which is well posed in H 1(Ω) for f ∈ L2(Ω). For a trial function v, set e = u − v. Then Kondratiev theory [3] says
that even when the consistency is verified at infinite order at r = 0, (η − �)e = O(r∞), the conclusion is that ∃a0 s.t.

e(r, θ) = a0r
1/x0 sin

(
θ − θ0

x0

)
+ o

(
r1/x0

)
(6)

with x0 = θ+−θ0
π

. The function r1/x0 sin(
θ−θ0
x0

) is the main natural singularity attached to the boundary value prob-
lem (5). It also provides the first term in the asymptotic expansion of the solution u to (5) with a vanishing right-hand
side f .

The sector Ω = R
∗+ × (θ0, θ+) in polar coordinates is decomposed into Ω1 = R

∗+ × (θ−, θ+) and Ω2 = R
∗+ ×

(θ0, θ−), with θ0 < θ− < θ+. We focus on the subdomain Ω1, the treatment of Ω2 is similar. The boundary problem (2)
in Ω1 with the interface conditions (4) solved by the error en+1

1 = un+1
1 − u reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
η − 1

r2

(
(r∂r )

2 + ∂2
θ

))
en+1

1 (r, θ) = 0,

en+1
1 (r, θ+) = 0,(
−1

r
∂θ + β̃(r) − 1

2
∂r

(
α̃(r)∂r

))
en+1

1 (r, θ−) =
(

−1

r
∂θ + β̃(r) − 1

2
∂r

(
α̃(r)∂r

))
en

2(r, θ−).

(7)

This problem admits a well posed variational formulation in a subspace of H 1(Ω1) with the sign conditions α1,

β1 > 0. The main singularities associated with this problem are derived following [3] by considering the principal part
as r → 0 and by applying the Mellin transform, û(z) = ∫ ∞

0 r izu(r) dr
r

.
We are led to consider the system

(
∂2
θ − z2)ê(z, θ) = 0, ê(z, θ+) = 0,

(
∂θ − β1 − α1

2
z2

)
ê(z, θ−) = ĝ(z), (8)

whose solution is a(z) ez(θ−θ−) + b(z) e−z(θ−θ+) with

a(z) = R(z)ĝ(z), b(z) = −a(z) ez(θ+−θ−),

R(z) =
[(

z − β1 − α1

2
z2

)
+

(
z + β1 + α1

2
z2

)
e2z(θ+−θ−)

]−1

.

Proposition 3.1. The poles with a positive imaginary part of the factor R(z) are the purely imaginary complex
numbers z = it , with t > 0 and tan(t (θ+ − θ−)) = 2t

α1t
2−2β1

whose first positive solution is denoted by t1.

Hence the main singularity which can be generated by solving (7) is O(rt1). It is an artificial singularity depending
on the domain decomposition. Here comes the strategy of the convergence improvement: the algorithm must not
produce artificial singularities, in particular when the solutions in subdomains have the right asymptotic behaviour. In

our case it is namely when the function en
2 defined in Ω2 has the form (6). By forgetting the o(r

1
x0 ) remainder, and

by taking for ĝ the Mellin transform of the right-hand side of (7), this provides the condition ĝ(it1) = 0. A simple
calculation gives

−β1 + α1

2x2
0

= 1

x0 tan(πx/x0)
, x = θ+ − θ−

π
. (9)
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Fig. 1. COC (solid line), CICC (dotted line).

Table 1
Number of iterations for different value of β1/α1, with |error|1 < 10−6

β1/α1 0.05 0.1 2/9 1 2 5 10

Iteration count 16 13 9 12 24 59 116

4. Numerical experiments

The previous strategy was tested on various examples. We show the simple case for a L-shaped domain where
θ0 = −3π/2, θ+ = 0 and θ− ∈ (−π,−π/2). In a symmetric decomposition where θ− = −3π/4, the relation (9)
says β1 = 2α1

9 for both subdomains. Using freeFEM++, we present a numerical comparison between the optimized
conditions of the regular case and the new conditions in the vicinity of the corner. We note |u|1 = (

∫
Ω

|∇u|2(x)dx)1/2.
We denote COC the new interface condition with coefficients given by (9), and CICC the interface conditions with
constant coefficients up to the corner. If we use β1

α1
= 2

9 , the iteration count is equal to 9 and it’s optimal, see Table 1.
With CICC, 15 iterations are necessary instead of 9 with COC, see Fig. 1. These results show that this choice is
actually numerically optimal.
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