Closed walks and eigenvalues of Abelian Cayley graphs

Sebastian M. Cioabă
Department of Mathematics, Queen's University at Kingston, Ontario K7L 3N6, Canada
Received 14 June 2005; accepted 23 February 2006
Available online 29 March 2006
Presented by Jean-Pierre Serre

Abstract

We show that Abelian Cayley graphs contain many closed walks of even length. This implies that given $k \geqslant 3$, for each $\epsilon>0$, there exists $C=C(\epsilon, k)>0$ such that for each Abelian group G and each symmetric subset S of G with $1 \notin S$, the number of eigenvalues λ_{i} of the Cayley graph $X=X(G, S)$ such that $\lambda_{i} \geqslant k-\epsilon$ is at least $C \cdot|G|$. This can be regarded as an analogue for Abelian Cayley graphs of a theorem of Serre for regular graphs. To cite this article: S.M. Cioabă, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Chaînes fermés et valeurs propres des graphes abélien de Cayley. Soit $k \geqslant 3$, pour chaque $\epsilon>0$, il existe une constante positive $C=C(\epsilon, k)>0$ telle que pour chaque groupe abélien G et pour chaque sous-ensemble symétrique $S \subset G$ ne contenant pas 1 , le nombre de valeurs propres λ_{i} de graphe de Cayley $X=X(G, S)$ qui satisfont $\lambda_{i} \geqslant k-\epsilon$ est au moins $C \cdot|G|$. Pour citer cet article : S.M. Cioabă, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be a k-regular, connected graph on n vertices. Denote by $t_{r}(u)$ the number of closed walks of length r starting at a vertex u of X and let $\Phi_{r}(X)=\sum_{u \in X} t_{r}(u)$. Let $k=\lambda_{1}>\lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ be the eigenvalues of the adjacency matrix of X. The graph X is called Ramanujan if $\left|\lambda_{i}\right| \leqslant 2 \sqrt{k-1}$ for each $\lambda_{i} \neq \pm k$. One of the hardest problems in graph theory is constructing infinite families of k-regular Ramanujan graphs for $k \geqslant 3$ fixed. The only constructions known (see $[4,7]$) are for $k-1$ a power of a prime and are obtained from Cayley graphs of certain matrix groups.
J.-P. Serre [4] proved the following result regarding the largest eigenvalues of regular graphs. For a simple proof and related results, see $[2,3,8]$.

Theorem 1.1 (Serre). For each $\epsilon>0$ and k, there exists a positive constant $c=c(\epsilon, k)$ such that for any k-regular graph X, the number of eigenvalues λ_{i} of X with $\lambda_{i} \geqslant(2-\epsilon) \sqrt{k-1}$ is at least $c|X|$.

[^0]In this Note, we prove that Abelian Cayley graphs have a large number of closed walks of even length. We use this fact to give a simple proof of the following Serre-type theorem for Abelian Cayley graphs.

Theorem 1.2. For each $\epsilon>0$ and k, there exists a positive constant $C=C(\epsilon, k)$ such that for any Abelian group G and for any symmetric set S of elements of G with $|S|=k$ and $1 \notin S$, the number of the eigenvalues λ_{i} of the Cayley graph $X=X(G, S)$ such that $\lambda_{i} \geqslant k-\epsilon$ is at least $C \cdot|G|$.

Cayley graphs are defined as follows. Let G be a finite multiplicative group, with identity 1 and suppose S is a subset of G such that $1 \notin S$ and $s \in S$ implies $s^{-1} \in S$. The Cayley graph $X=X(G, S)$ is the graph with vertex set G and with $x, y \in G$ adjacent if $x y^{-1} \in S$. Notice that adjacency is well-defined since S is symmetric. Also, G is regular with valency $k=|S|$ and it contains no loops since $1 \notin S$. It is easy to see that X is connected if and only if S generates G. If G is an Abelian group and S is a symmetric subset of k elements of G, then the eigenvalues of $X(G, S)$ are $\lambda_{\chi}=\sum_{s \in S} \chi(s)$ where χ ranges over all the characters of G (see Li [9]). This fact was used by Friedman, Murty and Tillich [6] who proved that the second largest eigenvalue of a k-regular Abelian Cayley graph with n vertices is at least $k-\mathrm{O}\left(k n^{-4 / k}\right)$.

There are Abelian Cayley graphs that are Ramanujan (see Li [9]). The proof that these graphs are Ramanujan is often based on number theoretic estimates of character sums. For each choice of a degree of regularity, all these constructions produce only a finite number of Ramanujan graphs. Theorem 1.2 shows that it is impossible to construct an infinite family of constant degree Abelian Cayley graphs that are Ramanujan. This also follows from [1] and [6].

2. Closed walks in Abelian Cayley graphs

Let G be a finite Abelian group. There is a simple bijective correspondence between the closed walks of length r starting at a vertex u of a Cayley graph $X(G, S)$ and the r-tuples $\left(a_{1}, \ldots, a_{r}\right) \in S^{r}$ with $\prod_{i=1}^{r} a_{i}=1$. To each closed walk $u=u_{0}, u_{1}, \ldots, u_{r-1}, u_{r}=u$, we associate the r-tuple

$$
\left(u_{0} u_{1}^{-1}, u_{1} u_{2}^{-1}, \ldots, u_{r-2} u_{r-1}^{-1}, u_{r-1} u_{r}^{-1}\right) \in S^{r} .
$$

Suppose that

$$
\begin{equation*}
S=\left\{x_{1}, x_{2}, \ldots, x_{s}, x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{s}^{-1}, y_{1}, \ldots, y_{t}\right\} \tag{1}
\end{equation*}
$$

where each x_{i} has order greater than 2 for $1 \leqslant i \leqslant s$ and each y_{j} has order 2 for $1 \leqslant j \leqslant t$. The degree of the Cayley graph of G with respect to S is $k=2 s+t$. Let $W_{2 r}(X)$ be the number of $2 r$-tuples from $S^{2 r}$ in which the number of appearances of x_{i} is the same as the number of appearances of x_{i}^{-1} for all $1 \leqslant i \leqslant s$ and the number of appearances of y_{j} is even for all $1 \leqslant j \leqslant t$. More precisely, $W_{2 r}(X)$ counts $2 r$-tuples from $S^{2 r}$ in which p positions are occupied by x_{i} 's, p positions are occupied by x_{i}^{-1} 's and the remaining $2 r-2 p$ positions are occupied by y_{j} 's (each of them appearing an even number of times), where $0 \leqslant p \leqslant r$. These choices imply that the product of the $2 r$ elements in this type of $2 r$-tuple is 1 .

Thus, $t_{2 r}(u) \geqslant W_{2 r}(X)$ for each $u \in V(X)$. This implies

$$
\begin{equation*}
\Phi_{2 r}(X)=\sum_{u \in V(X)} t_{2 r}(u) \geqslant n W_{2 r}(X), \tag{2}
\end{equation*}
$$

for each $r \geqslant 1$.
We evaluate $W_{2 r}(X)$ by choosing first the $2 p$ positions for the x_{i} 's and their inverses. This can be done in $\binom{2 r}{2 p}$ ways. Then we choose p positions for the x_{i} 's. This is done in $\binom{2 p}{p}$ ways and the rest are left for x_{i}^{-1} 's. Since this happens for all $0 \leqslant p \leqslant r$, we get the following expression for $W_{2 r}(X)$

Lemma 2.1. For each $r \geqslant 1$, we have

$$
W_{2 r}(X)=\sum_{p=0}^{r}\binom{2 r}{2 p}\binom{2 p}{p} \sum_{i_{1}+\cdots+i_{s}=p}\binom{p}{i_{1}, \ldots, i_{s}}^{2} \sum_{2 j_{1}+\cdots+2 j_{t}=2 r-2 p}\binom{2 r-2 p}{2 j_{1}, \ldots, 2 j_{t}} .
$$

We now obtain lower bounds for

$$
c(p, s)=\sum_{i_{1}+\cdots+i_{s}=p}\binom{p}{i_{1}, \ldots, i_{s}}^{2} \text { and } d(r-p, t)=\sum_{2 j_{1}+\cdots+2 j_{t}=2 r-2 p}\binom{2 r-2 p}{2 j_{1}, \ldots, 2 j_{t}} .
$$

Obtaining a closed formula for any of these two sums seems to be an interesting and difficult combinatorial problem in itself. We use the Cauchy-Schwarz inequality to obtain a lower bound on $c(m, l)$.

$$
c(m, l)=\sum_{i_{1}+\cdots+i_{l}=m}\binom{m}{i_{1}, \ldots, i_{l}}^{2} \geqslant \frac{\left(\sum_{i_{1}+\cdots+i_{l}=m}\binom{m}{i_{1}, \ldots, i_{l}}\right)^{2}}{\binom{m+l-1}{l-1}}=\frac{l^{2 m}}{\binom{m+l-1}{l-1}} .
$$

Our lower bound for $d(m, l)$ follows from the following result of Fixman [5].

$$
d(m, l)=2^{-l} \sum_{j=0}^{l}\binom{l}{j}(l-2 j)^{2 m}>2^{1-l} l^{2 m}
$$

Hence, we have

$$
\begin{equation*}
c(m, l)>\frac{l^{2 m}}{\binom{m+l-1}{l-1}}, \quad d(m, l)>\frac{l^{2 m}}{2^{l-1}} \tag{3}
\end{equation*}
$$

These two inequalities and Lemma 2.1 easily imply the next result. Recall that $k=2 s+t$.
Lemma 2.2. For each $r \geqslant 1$, we have

$$
W_{2 r}(X)>\frac{k^{2 r}}{2^{k}(2 r+1)\binom{k+r-1}{k-1}} .
$$

Proof. Using Lemma 2.1, inequalities (3) and $\binom{2 p}{p}>\frac{2^{2 p}}{2 p+1}$, we get

$$
\begin{aligned}
W_{2 r}(X) & =\sum_{p=0}^{r}\binom{2 r}{2 p}\binom{2 p}{p} c(p, s) d(r-p, t)>\sum_{p=0}^{r}\binom{2 r}{2 p} \frac{2^{2 p}}{2 p+1} \cdot \frac{s^{2 p}}{\binom{s+p-1}{s-1}} \cdot \frac{t^{2 r-2 p}}{2^{t-1}} \\
& >\sum_{p=0}^{r}\binom{2 r}{2 p} \frac{(2 s)^{2 p} t^{2 r-2 p}}{(2 r+1)\binom{s+r-1}{s-1} 2^{k-1}}>\frac{1}{(2 r+1)\binom{k+r-1}{k-1} 2^{k-1}} \sum_{p=0}^{r}\binom{2 r}{2 p}(2 s)^{2 p} t^{2 r-2 p} \\
& =\frac{1}{(2 r+1)\binom{k+r-1}{k-1} 2^{k-1}} \cdot \frac{(2 s+t)^{2 r}+(2 s-t)^{2 r}}{2}>\frac{k^{2 r}}{2^{k}(2 r+1)\binom{k+r-1}{k-1}} .
\end{aligned}
$$

3. The proof of Theorem 1.2

We now present the proof of Theorem 1.2.
Proof. Let $\epsilon>0$. Consider an Abelian group G and S a subset of G of size k. Denote by n the order of G and by m the number of eigenvalues λ_{i} of $X=X(G, S)$ such that $\lambda_{i} \geqslant k-\epsilon$. Then there are exactly $n-m$ eigenvalues of X that are less than $k-\epsilon$. It follows that

$$
\begin{equation*}
\operatorname{tr}(k I+A)^{2 l}=\sum_{i=1}^{n}\left(k+\lambda_{i}\right)^{2 l}<(n-m)(2 k-\epsilon)^{2 l}+m(2 k)^{2 l}, \tag{4}
\end{equation*}
$$

for each $l \geqslant 1$.
Using Lemma 2.2 and (2), we obtain the following

$$
\begin{aligned}
\operatorname{tr}(k I+A)^{2 l} & =\sum_{i=0}^{2 l}\binom{2 l}{i} k^{i} \Phi_{2 l-i}(X) \geqslant \sum_{j=0}^{l}\binom{2 l}{2 j} k^{2 j} \Phi_{2 l-2 j}(X) \\
& >n \sum_{j=0}^{l}\binom{2 l}{2 j} k^{2 j} \frac{k^{2 l-2 j}}{2^{k}(2(l-j)+1)\binom{k+l-j-1}{k-1}}>n \frac{(2 k)^{2 l}}{2^{k+1}(2 l+1)\binom{k+l-1}{k-1}}
\end{aligned}
$$

for each $l \geqslant 1$. Combining this inequality with (4), it follows that

$$
\begin{equation*}
\frac{m}{n}>\frac{\frac{1}{2^{k+1}(2 l+1)\binom{k+l-1}{k-1}}(2 k)^{2 l}-(2 k-\epsilon)^{2 l}}{(2 k)^{2 l}-(2 k-\epsilon)^{2 l}}, \tag{5}
\end{equation*}
$$

for each $l \geqslant 1$. Now

$$
\lim _{l \rightarrow \infty} \sqrt[2 l]{\frac{1}{2^{k+1}(2 l+1)\binom{k+l-1}{k-1}}(2 k)^{2 l}}=2 k>2 k-\epsilon=\lim _{l \rightarrow \infty} \sqrt[2 l]{2(2 k-\epsilon)^{2 l}} .
$$

This implies that there exists $l_{0}=l(\epsilon, k)$ such that

$$
\frac{1}{2^{k+1}(2 l+1)\binom{k+l-1}{k-1}}(2 k)^{2 l}-(2 k-\epsilon)^{2 l}>(2 k-\epsilon)^{2 l},
$$

for each $l \geqslant l_{0}$. Letting

$$
C(\epsilon, k)=\frac{(2 k-\epsilon)^{2 l_{0}}}{(2 k)^{2 l_{0}}-(2 k-\epsilon)^{2 l_{0}}}>0
$$

it follows that

$$
\frac{m}{n}>C(\epsilon, k) .
$$

This proves the theorem.

References

[1] N. Alon, Y. Roichman, Random Cayley graphs and expanders, Random Structures Algorithms 5 (2) (1994) $271-284$.
[2] S.M. Cioabă, Eigenvalues, expanders and gaps between primes, Ph.D. Thesis, Queen's University at Kingston, Canada, 2005.
[3] S.M. Cioabă, On the extreme eigenvalues of regular graphs, Journal of Combinatorial Theory, Series B, in press.
[4] G. Davidoff, P. Sarnak, A. Vallete, Elementary Number Theory, Group Theory and Ramanujan Graphs, Cambridge University Press, 2003.
[5] U. Fixman, Sums of multinomial coefficients, Canad. Math. Bull. 31 (2) (1988) 187-189.
[6] J. Friedman, R. Murty, J.P. Tillich, Spectral estimates of Abelian Cayley graphs, Journal of Combinatorial Theory, Series B 96 (1) (2006) 111-121.
[7] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261-277.
[8] A. Nilli, Tight estimates for eigenvalues of regular graphs, Electron. J. Combin. 11 (9) (2004) 1-4.
[9] W.-C. Winnie Li, Character sums and Abelian Ramanujan graphs, J. Number Theory 41 (1992) 199-217.

[^0]: E-mail address: sebi@mast.queensu.ca (S.M. Cioabă).
 1631-073X/\$ - see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2006.03.005

