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Abstract

The asymptotic behaviour of the smallest eigenvalue in linear shell problems is studied, as the thickness parameter tends to zero.
When pure bending is not inhibited, such a behaviour has been essentially studied by Sanchez-Palencia. When pure bending is
inhibited, the situation is more complex and some information can be obtained by using the Real Interpolation Theory. In order
to cover the widest range of mid-surface geometry and boundary conditions, an abstract approach has been followed. A result
concerning the ratio between the bending and the total elastic energy is also announced. To cite this article: L. Beirão da Veiga,
C. Lovadina, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Étude asymptotique des problèmes de valeur prope pour les coques. Dans cette Note, on étudie le comportement asymp-
totique de la plus petite valeur propre pour un modèle de coque linéaire, lorsque l’épaisseur de la coque tend vers zéro. Pour les
situations de flexion pure non-inhibée, ce comportement a déjà été largement étudié par Sanchez-Palencia. Dans un cas de flexion
pure inhibée le problème est plus complexe et on peut employer la théorie de l’interpolation réelle pour l’aborder. Nous proposons
une méthodologie abstraite qui vise à couvrir un éventail de configurations le plus large possible en matière de géométrie de la
surface moyenne et de conditions aux limites. On annonce également un résultat portant sur le ratio entre énergie de flexion et
énergie totale. Pour citer cet article : L. Beirão da Veiga, C. Lovadina, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In studying the eigenvalues for 2-D shell models, one is led to consider a problem of the following type (see [7],
for instance):




Find (uε, λε) ∈ V × R such that
εam(uε, v) + ε3ab(uε, v) = λε(uε, v) ∀v ∈ V

‖uε‖H = 1.

(1)
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Above, ε is the thickness parameter (for which we suppose that 0 < ε � 1), am(·, ·) is the membrane (or the membrane-
shear) bilinear form, and ab(·, ·) is the bending bilinear form. Moreover, V is the admissible displacement space,
which also takes into account the kinematical boundary conditions imposed to the structure, and H is an L2-type
space with inner product (·, ·).

The aim of this Note is to report our results, extensively proved in [3], about the asymptotics (as ε → 0+) of the
smallest eigenvalue of problem (1). We remark that the main tool we use is the Real Interpolation Theory (see [4], for
instance), which has been employed in [1] to classify the asymptotic behaviours of the shell source problem.

2. Setting of the problem

For problem (1) we will make the following assumptions (which are indeed shared by most of the shell models –
see [5] or [6], for instance):

(i) V and H are both separable Hilbert spaces. Furthermore, we assume the compact and dense inclusion V ⊂ H .
(ii) The bilinear forms am(·, ·) and ab(·, ·) are symmetric and continuous on V .

(iii) The sum am(·, ·) + ab(·, ·) is coercive on V .

Therefore, it follows that:

(i) Using H as pivot space, we have the dense inclusion H ′ ≡ H ⊂ V ′.
(ii) For each ε > 0, there exists a monotone non-decreasing sequence of real eigenvalues {λn

ε }∞n=1, and corresponding
eigenspaces Λn

ε ⊂ V , with dimΛn
ε < ∞. Since we will focus only on the smallest eigenvalue, in the sequel λ1

ε

will be simply denoted by λε , and its eigenspace Λ1
ε by Λε . We also recall that λε is characterized by the Rayleigh

quotient (see for instance [10])

λε = inf
v∈V

εam(v, v) + ε3ab(v, v)

‖v‖2
H

. (2)

(iii) The bilinear form ab(·, ·) is coercive on the space of inextensional displacements (see [8]):

K = {
v ∈ V : am(v,w) = 0∀w ∈ V

}
. (3)

We are interested in studying the real function ε → λε . By taking v = uε in (1), we see that λε is the elastic energy
of any uε ∈ Λε , with ‖uε‖H = 1:

λε = εam(uε,uε) + ε3ab(uε, uε). (4)

We now introduce the following definition:

Definition 2.1. We say that the eigenvalue problem (1) is of order α if

α = inf
{
β: εβλ−1

ε ∈ L∞(0,1)
}
. (5)

Remark 1. Definition 2.1 means that if the eigenvalue problem is of order α, then α is the “best” exponent in order to
have λε ∼ εα . Furthermore, it is easily seen that if the eigenvalue problem is of order α, then 1 � α � 3.

We will also consider the percentage of the elastic energy stored in the bending part. Accordingly, for 0 < ε � 1
and uε ∈ Λε with ‖uε‖H = 1, we define the function R(ε,uε) as

R(ε,uε) := ε3ab(uε, uε)

λε

. (6)

3. Asymptotic behaviour of λε and of R(ε)

In order to study the asymptotic behaviour of the shell eigenvalue problem, we distinguish two cases, depending
whether the space K defined in (3) is reduced to {0} or not.
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3.1. The case K 
= {0}: non-inhibited pure bending

The following result is an easy consequence of the theory developed in [9]:

Theorem 3.1. Suppose that K 
= {0}. Then there exist constants C1 and C2, independent of ε such that

C1ε
3 � λε � C2ε

3. (7)

Therefore, the eigenvalue problem is of order α = 3 (cf. Definition 2.1). Furthermore, it holds

lim
ε→0+ R(ε,uε) = 1. (8)

Remark 2. We notice that (8) is consistent with Proposition 3.4.

3.2. The case K = {0}: inhibited pure bending

We first notice that in this case am(·, ·) defines a norm on V . We set W as the completion of V with the norm
am(v, v)1/2 := ||v||W . Therefore, we have the dense inclusion V ⊆ W , which implies W ′ ⊆ V ′ densely. We have the
following result, whose proof can be found in [3]:

Theorem 3.2. Suppose that K = {0}. Then, for 0 < θ < 1, we have

H ⊆ (W ′,V ′)θ,∞ if and only if ε2θ+1λ−1
ε ∈ L∞(0,1). (9)

The following corollary is an immediate consequence of Theorem 3.2 and Definition 2.1.

Corollary 3.3. The order α of the eigenvalue problem (1) is given by

α = inf
{
2θ + 1: H ⊆ (W ′,V ′)θ,∞

}
. (10)

Concerning the ratio R(ε,uε) defined by (6), in [3] we proved the following result:

Proposition 3.4. Let the eigenvalue problem (1) be of order α. Suppose also that there exist

lim
ε→0+

(
ε−αλε

) = l0 > 0 and lim
ε→0+ R(ε,uε) � 0, (11)

where uε ∈ Λε . Then it holds

lim
ε→0+ R(ε,uε) = α − 1

2
. (12)

Remark 3. In [2] an asymptotic analysis of λε and R(ε,uε) for a clamped cylindrical shell has been developed, by
using a Fourier expansion technique. Among the results of that paper, it has been proved and numerically tested that

λε ∼ ε2, lim
ε→0+ R(ε,uε) = 1

2
. (13)

In the terminology of the present Note, Eq. (13) correspond to the choice α = 2. The same result can be obtained by
applying Corollary 3.3 and Proposition 3.4 to the clamped cylindrical shell, as detailed in [3].
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