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Abstract

Suppose that M is a CR manifold bounding a compact complex manifold X. The manifold X admits an approximate Kähler–
Einstein metric g which makes the interior of X a complete Riemannian manifold. We identify certain residues of the scattering
operator as CR-covariant differential operators and obtain the CR Q-curvature of M from the scattering operator as well. Our results
are an analogue in CR-geometry of Graham and Zworski’s result that certain residues of the scattering operator on a conformally
compact manifold with a Poincaré–Einstein metric are natural, conformally covariant differential operators, and the Q-curvature
of the conformal infinity can be recovered from the scattering operator. To cite this article: P.D. Hislop et al., C. R. Acad. Sci.
Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Des CR-invariants et la matrice de diffusion pour des variétés complexes avec CR-frontière. Soit M une variété CR qui est
aussi la frontière d’une variété complexe et compacte X. Il y a une métrique g de type Kähler–Einstein sur X telle que Int(X) est
une variété riemannienne complète. Nous étudions la matrice de diffusion sur (X,g) et nous montrons que les résidus à certains
points sont des opérateurs différentiels CR-covariants. Nous montrons aussi qu’on peut recuperer la courbure CR Q en utilisant
la matrice de diffusion. Nos résultats sont les analogues des résultats de Graham–Zworski pour le cas réel et asymptotiquement
hyperbolique. Pour citer cet article : P.D. Hislop et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

In this Note we describe certain CR-invariants of a strictly pseudoconvex CR manifold M as residues of the
scattering operator for the Laplacian on an ambient complex Kähler manifold X having M as a ‘CR-infinity’. We also
characterize the CR Q-curvature in terms of the scattering operator. Details will appear in [12]. Our results parallel
earlier results of Graham and Zworski [10], who showed that if X is an asymptotically hyperbolic manifold carrying a
Poincaré–Einstein metric, the Q curvature and certain conformally covariant differential operators on the ‘conformal
infinity’ M of X can be recovered from residues of the scattering operator on X.
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To describe our results, we first recall some basic notions of CR geometry and recent results [4,6] concerning
CR-covariant differential operators and CR-analogues of Q-curvature. If M is a smooth, orientable manifold of real
dimension (2n + 1), a CR-structure on M is a real hyperplane subbundle H of T M together with a smooth bundle
map J :H → H with J 2 = −1 that determines an almost complex structure on H . We denote by T1,0 the eigenspace
of J on H ⊗ C with eigenvalue +i; we will always assume that the CR-structure on M is integrable in the sense that
[T1,0, T1,0] = T1,0. We will assume that M is orientable, so that the line bundle H⊥ ⊂ T ∗M admits a nonvanishing
global section. A pseudohermitian structure on M is smooth, nonvanishing section θ of H⊥. The Levi form of θ is the
Hermitian form Lθ(v,w) = dθ(v, Jw) on H . Strict pseudoconvexity of the CR structure on M means that the Levi
form is positive definite. Thus, θ is a contact form, and the form ω = θ ∧ (dθ)n is a volume form that defines a natural
inner product on C∞(M) by integration. The pseudohermitian structure on M also determines a connection on T M ,
the Tanaka–Webster connection ∇θ ; the basic data of pseudohermitian geometry are the curvature and torsion of this
connection (see [17,19]).

Given a fixed CR-structure (H,J ) on M , any nonvanishing section θ of H⊥ takes the form e2Υ θ for a fixed section
θ of H⊥ and some function Υ ∈ C∞(M). The corresponding Levi form is given by Lθ = e2Υ Lθ . In this sense the
CR-structure determines a conformal class of pseudohermitian structures on M .

For strictly pseudoconvex domains, Fefferman and Hirachi [4] proved the existence of CR-covariant differential
operators Pk of order 2k, k = 1,2, . . . , n + 1, whose principal parts are �k

θ , where �θ is the sub-Laplacian on M

with respect to the pseudohermitian structure θ ; Graham and Gover [6] proved that the same is true if M is a strictly
pseudoconvex CR manifold. These authors exploit the Graham–Fefferman construction of conformally covariant dif-
ferential operators [7] and Fefferman’s construction of a circle bundle C over M with a natural conformal structure.
Indeed, there is a mapping θ 
→ gθ of a conformal class of pseudohermitian structures on M onto a conformal class
of Lorentz metrics on C. The operators Pk are pullbacks to M of the GJMS [8] conformally covariant differential
operators on C. The CR Q-curvature may be similarly defined as a pullback to M of Branson’s Q-curvature [1] on the
circle bundle C. Here we will show that the operators Pk on M occur as residues for the scattering operator associated
to a natural scattering problem with M as the boundary at infinity, and that the CR Q-curvature QCR

θ can be computed
from the scattering operator as well.

To describe the scattering problem, we first discuss its geometric setting. Recall that if M is an integrable CR-
manifold of real dimension (2n + 1) with n � 2, there is a complex manifold X of complex dimension N = n + 1
having M as its boundary so that the CR-structure on M is that induced from the complex structure on X (this result
is false, in general, when n = 1; see [11]). Let ρ be a defining function for M and denote by X̊ the interior of X (we
take ρ < 0 in X̊). The associated Kähler metric g on X is the Kähler metric with Kähler form − i

2∂∂ log(−ρ). The
metric has the form g = −ηρ−1 + (1 − rρ)ρ−2(dρ2 + Θ2), where Θ|M = θ , and η|H = h are the induced contact
form on M and pseudohermitian metric on H , and r is a smooth function, the transverse curvature, which depends
on the choice of ρ (see [9]). Thus, the conformal class of a pseudohermitian metric h on H , a subbundle of T M , is a
kind of ‘Dirichlet datum at infinity’ for the metric g, that is −ρg|H = h.

It is natural to consider scattering theory for the Laplacian, �g , on (X̊, g). If we define ρ = −x2, the metric
g is seen to belong to the class of Θ-metrics considered by Epstein, Melrose, and Mendoza [2], so that the full
power of their analysis of the resolvent R(s) = (�g − s(N − s))−1 of �g is available to study scattering theory
on (X̊, g). For f ∈ C∞(M), Re(s) = N/2, and s �= N/2, there is a unique solution u of �gu = s(N − s)u with
u = (−ρ)N−sF + (−ρ)sG, where F,G ∈ C∞(X), and F |M = f . The uniqueness depends on absence of L2 solutions
of the eigenvalue problem for Re(s) = N/2, which may be proved, for example, using [18]. The explicit formulas
for the Kähler form and Laplacian obtained in [9] are used to obtain the asymptotic expansions of solutions to the
generalized eigenvalue problem.

Unicity for the ‘Dirichlet problem’ defined above implies that the Poisson map P(s) :C∞(M) � f → u ∈ C∞(X̊)

and the scattering operator SX(s) :C∞(M) � f → G|M ∈ C∞(M) are well-defined. The operator SX(s) depends a
priori on the boundary defining function ρ for M . If ρ = eϕρ is another defining function for M and ϕ|M = Υ ,
the corresponding scattering operator SX(s) is given by SX(s) = e−sΥ SX(s) e(s−N)Υ . The operator SX(s) admits a
meromorphic continuation to the complex plane, possibly with essential singularities at the points s = 0,−1,−2, . . . ;
see [15] where the scattering operator is described and the problem of studying its poles and residues is posed. The
scattering operator is self-adjoint for s real.

Fefferman [3] constructed a local approximate solution to the complex Monge–Ampère equation near the boundary
of a strictly pseudoconvex domain which is the Kähler potential of an approximate Kähler–Einstein metric; using the



P.D. Hislop et al. / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 651–654 653
invariance properties of the Monge–Ampère operator, one can globalize this construction to obtain an approximate
solution of the complex Monge–Ampère equation near the boundary of a compact complex manifold with boundary
[5]. It follows that X̊ carries an approximate Kähler–Einstein metric g in the sense that Ric(g) = −(n + 2)ω +
O(ρn+1), where Ric is the Ricci form. Our first result is:

Theorem 1. Let X be a complex manifold of complex dimension N = n + 1 with strictly pseudoconvex boundary M

of real dimension 2n + 1. Let g be the Kähler metric on X described above, and let SX(s) be the scattering operator
for �g . Finally, suppose that �X has no L2-eigenvalues. Then SX(s) has poles at the points s = (n + 1)/2 + k/2,
k ∈ N, whose residues are differential operators of order 2k. If g is an approximate Kähler–Einstein metric, then for
1 � k � n + 1, these residues are the CR-covariant differential operators Pk up to a universal constant ck .

It follows from the self-adjointness (s real) and conformal covariance of SX(s) that the operators Pk are self-adjoint
and conformally covariant. As in [10], the analysis centers on the Poisson map P(s) already defined. As shown in [2],
the Poisson map is analytic in s for Re(s) > N/2. Moreover, at the points s = N/2 + k/2, k = 1,2, . . . , the Pois-
son operator takes the form P(s)f = (−ρ)N/2−k/2F + [(−ρ)N/2+k/2 log(−ρ)]G, for functions F,G ∈ C∞(X) with
F |M = f , and G|M = ckPkf . Here Pk are differential operators determined by a formal power series expansion of the
Laplacian. An important ingredient in the analysis is the asymptotic form of the Laplacian due to Lee and Melrose [14]
and refined by Graham and Lee in [9]. If the defining function ρ is an approximate solution of the complex Monge–
Ampère equation, the differential operators Pk , 1 � k � N , can be identified with the GJMS operators owing to the
characterization of P(s)f described above (see Proposition 5.4 in [6]; the argument given there for pseudoconvex
domains easily generalizes to the present setting).

Explicit computation shows that, for an approximate Kähler–Einstein metric g, the first operator has the form
P1 = c1(�b +n(2(n+ 1))−1R), where �b is the sub-Laplacian on X and R is the Webster scalar curvature, i.e., P1 is
the CR-Yamabe operator of Jerison and Lee [13]. The CR Q-curvature is a pseudohermitian invariant realized as the
pullback to M of the Q-curvature of the circle bundle C.

Theorem 2. Suppose that X is a complex manifold with strictly pseudoconvex boundary M , equipped with an ap-
proximate Kähler–Einstein metric. Let SX(s) be the associated scattering operator. The formula cNQCR

θ = SX(N)1
holds.

It follows from Theorem 1 and the conformal covariance of SX(s) that if θ = e2Υ θ , then e2NΥ QCR
θ̄

= QCR
θ +PNΥ

as was already shown in [4]. From this it follows that the integral
∫
M

QCR
θ dω is a CR-invariant. We remark that the

integral of QCR
θ vanishes for any three-dimensional CR-manifold because the integrand is a total divergence (see [4],

Proposition 3.2 and comments below), while for any hypersurface in C
N , there is a pseudohermitian structure for

which QCR
θ = 0 (see [4], Proposition 3.1). Thus it is not clear at present under what circumstances this invariant is

nontrivial.
If ρ is the defining function associated to an approximate Kähler–Einstein metric on X, the volume of the set

{−ρ < ε} has an asymptotic expansion of the form c0ε
−n−1 + c1ε

−n +· · ·+ cnε
−1 +L log(−ε)+V + o(1). Seshadri

[16] showed that L is, up to a constant, the integral of QCR
θ ; in [12] we give an independent proof using scattering

theory along the lines of [10].
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