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Abstract

Let Ω � C
n be a strongly hyperconvex domain and Ωj be a decreasing sequence of hyperconvex domains such that

Ω = (
⋂

Ωj )◦. We show that every plurisubharmonic function ϕ ∈ Fa(Ω) is a limit of an increasing sequence of functions
ϕj ∈Fa(Ωj ). To cite this article: S. Benelkourchi, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’approximation des fonctions plurisousharmoniques. Soit Ω � C
n un domaine fortement hyperconvexe et Ωj une suite

décroissante de domaines hyperconvexes tel que Ω = (
⋂

Ωj )◦. On prouve que toute fonction plurisousharmonique ϕ ∈ Fa(Ω)

est limite d’une suite croissante de fonctions ϕj ∈ Fa(Ωj ). Pour citer cet article : S. Benelkourchi, C. R. Acad. Sci. Paris, Ser. I
342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The purpose of this Note is to answer to a question posed by U. Cegrell (cf. [3]) about the approximation of
plurisubharmonic functions. We first recall some definitions (cf. [4]). Let Ω � C

n be a bounded hyperconvex domain,
i.e. open, bounded, connected and there exists a continuous plurisubharmonic function ρ :Ω → (−∞,0) such that
the closure of the set {z ∈ Ω: ρ(z) < c} is compact in Ω for every c ∈ (−∞,0). If moreover the function ρ is defined
in a neighborhood Ω ′ of �Ω and Ω = {ρ < 0} then we say (see [7]) that Ω is strongly hyperconvex. Such function ρ

is called an exhaustion function for Ω .
We denote by E0(Ω) the class of negative and bounded plurisubharmonic functions u on Ω which tends to 0 at the

boundary of Ω and satisfy
∫
Ω

(ddcu)n < ∞. Then denote by F(Ω) the class of negative plurisubharmonic functions
ϕ on Ω for which there exists a decreasing sequence (ϕj ) of plurisubharmonic functions in E0(Ω) converging to ϕ

on Ω such that

sup
j

∫
Ω

(
ddcϕj

)n
< +∞.
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It is known (see [4]) that the complex Monge–Ampère operator is well defined for a function ϕ ∈ F(Ω) as the
weak-limit of the sequence of measures (ddcϕj )

n, where (ϕj ) is any decreasing sequence of plurisubharmonic func-
tions from the class E0(Ω) converging to ϕ and every negative plurisubharmonic function u on Ω , such that (ddcu)n

is well defined, is locally in F(Ω); to every open, relatively compact ω � Ω , there is a uω ∈F(Ω) with uω = u on ω.
Finally we denote by Fa(Ω) the subclass of functions u in F(Ω) such that its complex Monge–Ampère measure

(ddcu)n vanishes on all pluripolar subsets of Ω .

Theorem 1.1. Let Ω � C
n be a strongly hyperconvex domain, Ωj be a decreasing sequence of hyperconvex domains

containing Ω such that Ω = (
⋂

Ωj)
◦ and for each open set D containing �Ω , there exists j such that Ωj ⊂ D.

Suppose ϕ ∈ Fa(Ω). Then there exists an increasing sequence of functions ϕj ∈ Fa(Ωj ) such that limj→+∞ ϕj (z) =
ϕ(z), ∀z ∈ Ω .

2. Proof

We start by give a new characterization of the class F(Ω) in terms of the relative Monge–Ampère Capacity of
sublevel sets. We recall that if E � Ω is a Borelean set, then the relative Monge–Ampère Capacity of the condenser
(E,Ω) is defined by the formula (see [1])

cap(E,Ω) := sup

{∫
E

(
ddcv

)n
, v ∈ PSH(Ω); −1 � v � 0

}
.

Proposition 2.1. A function ϕ ∈F(Ω) if and only if

lim sup
s→0

sn cap
({z ∈ Ω;ϕ � −s},Ω)

< ∞,

moreover, if ϕ ∈F(Ω) then∫
Ω

(
ddcϕ

)n = lim
s→0

sn cap
({z ∈ Ω;ϕ � −s},Ω)

. (1)

Proof. Let ϕ ∈ PSH−(Ω), from [4] there exist a sequence of functions ϕj ∈ E0(Ω) such that ϕj ↘ ϕ in Ω , and then
we have (cf. [2,1,6]), for every j

sn cap
({ϕj � −s},Ω)

�
∫
Ω

(
ddcϕj

)n
, ∀s > 0. (2)

If ϕ ∈F(Ω) then supj

∫
Ω

(ddcϕj )
n < +∞, and therefore lim sups→0 sn cap({z ∈ Ω; ϕ � −s},Ω) < ∞.

Now, assume that lim sups→0 sn cap({z ∈ Ω;ϕ � −s},Ω) < ∞, from [5] we have, for every j∫
{ϕj �−s}

(
ddcϕj

)n � sn cap
({ϕj � −s},Ω)

, (3)

then ∫
Ω

(
ddcϕj

)n � lim sup
s→0

sn cap
({ϕ � −s},Ω)

< ∞,

which imply that ϕ ∈ F .
For the second claim, let ϕ ∈ F , from Corollary 3.4 and Proposition 5.1 in [4] and the inequality (3) we get∫ (

ddcϕ
)n � lim inf

s→0
sn cap

({z ∈ Ω;ϕ � −s},Ω)
.

Ω
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Using the inequalities (2) once more, we get

lim sup
s→0

sn cap
({ϕ � −s},Ω)

�
∫
Ω

(
ddcϕ

)n
,

hence (1) is proved. �
Lemma 2.2. Let Ω and Ωj be as in the preceding theorem. Let K be a compact subset of Ω . Then cap(K,Ωj ) →
cap(K,Ω), as j → ∞.

Proof. We may assume that K is a regular compact. Let denote hK,Ωj
the relative extremal function of the condenser

(K,Ωj ). It’s clear that (hK,Ωj
)j is increasing sequence of functions on Ω , then limj→∞ hK,Ωj

� hK,Ω on Ω . We
claim that limj→∞ hK,Ωj

= hK,Ω .
Let ε > 0 and 0 < c < ε, define

v =
{

max(hK,Ω − ε,ρ − c) on Ω,

ρ − c on Ω ′\Ω.

For j an integer big enough (Ωj ⊂ {z ∈ Ω ′;ρ(z) < c}), the function v ∈ PSH−(Ωj ) and v/K � −1, thus hK,Ω − ε �
hK,Ωj

for all j bigger than some an integer j0 = j0(ε).
Letting j tend to ∞ and ε tend to 0, we get hK,Ω � limj→∞ hK,Ωj

and the claim is proved.
It follows by [1] that (ddchK,Ωj

)n converges weakly to (ddchK,Ω)n, thus

lim sup
j→∞

∫
K

(
ddchK,Ωj

)n �
∫
K

(
ddchK,Ω

)n =
∫
Ω

(
ddchK,Ω

)n � lim inf
j→∞

∫
Ω

(
ddchK,Ωj

)n
,

and the lemma is proved. �
Now we are ready to prove Theorem 1.1. Fix an integer j and observe that the measure µ = χΩ(ddcϕ)n put no

mass on the pluripolar subsets of Ωj and µ(Ωj ) < ∞, then by [4], there exist a unique function ϕj ∈ Fa(Ωj ) such
that (

ddcϕj

)n = χΩ

(
ddcϕ

)n
.

It follows from Theorem 5.15 in [4] that the sequence of functions ϕj is increasing.
Denote ϕ̃ = (limϕj )

∗, then we have ϕ̃ is negative and plurisubharmonic on Ω . We claim that ϕ̃ ∈ F(Ω).
Indeed, from the inequality (2), we have

sn cap
({ϕj � −s},Ωj

)
�

∫
Ωj

(
ddcϕj

)n
,

and since ϕj � ϕ̃, it follows that

sn cap
({ϕ̃ � −s},Ωj

)
�

∫
Ω

(
ddcϕ

)n
, ∀j,

thus, by the preceding lemma

sn cap
({ϕ̃ � −s},Ω)

�
∫
Ω

(
ddcϕ

)n
< ∞,

which implies by the preceding proposition that ϕ̃ ∈ F(Ω).
Now the sequence ϕj increases to ϕ̃ ∈ F(Ω) on Ω and (ddcϕj )

n = χΩ(ddcϕ)n, it follows by the continuity
of the complex Monge–Ampère operator under increasing sequence that (ddcϕ̃)n = (ddcϕ)n. Since the comparison
principle still holds in Fa(Ω) (see [4]) then ϕ̃ = ϕ which proves the theorem.
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