

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 689-692

http://france.elsevier.com/direct/CRASS1/

Probability Theory/Functional Analysis

The invertibility of adapted perturbations of identity on the Wiener space

A. Suleyman Üstünel^a, Moshe Zakai^b

^a ENST – Paris, Département Infres, 46, rue Barrault, 75013 Paris, France ^b Technion, Haifa, Department of Electrical Engineering, 32000 Haifa, Israel

Received 14 February 2006; accepted 22 February 2006

Available online 29 March 2006

Presented by Paul Malliavin

Abstract

Let (W, H, μ) be the classical Wiener space. Assume that $U = I_W + \mu$ is an adapted perturbation of identity, i.e., $u: W \to H$ is adapted to the canonical filtration of W. We give some sufficient analytic conditions on u which imply the invertibility of the map U. To cite this article: A.S. Üstünel, M. Zakai, C. R. Acad. Sci. Paris, Ser. I 342 (2006). © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L'inversibilité des perturbations d'identité adaptées sur l'espace de Wiener. Soit (W, H, μ) l'espace de Wiener. Soit $U = I_W + u$ une perturbation d'identité adaptée, i.e., $u: W \to H$ est adaptée à la filtration canonique de W. Nous donnons quelques conditions suffisantes qui impliquent l'inversibilité de l'application U. Pour citer cet article : A.S. Üstünel, M. Zakai, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Preliminaries

Let $W = C_0([0, 1])$ be the Banach space of continuous functions on [0, 1], with its Borel sigma field denoted by \mathcal{F} . We denote by H the Cameron–Martin space, namely the space of absolutely continuous functions on [0, 1] with square integrable Lebesgue density:

$$H = \left\{ h \in W: \ h(t) = \int_{0}^{t} \dot{h}(s) \, \mathrm{d}s, \ |h|_{H}^{2} = \int_{0}^{1} \left| \dot{h}(s) \right|^{2} \, \mathrm{d}s < \infty \right\}.$$

 μ denotes the classical Wiener measure on (W, \mathcal{F}) , $(\mathcal{F}_t, t \in [0, 1])$ is the filtration generated by the paths of the Wiener process $(t, w) \rightarrow W_t(w)$, where $W_t(w)$ is defined as w(t) for $w \in W$ and $t \in [0, 1]$. We shall recall briefly

E-mail addresses: ustunel@enst.fr (A.S. Üstünel), zakai@ee.technion.ac.il (M. Zakai).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter $\,^{\odot}$ 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2006.02.031

some well-known functional analytic tools on the Wiener space, we refer the reader to [4,3,5] or to [6] for further details: $(P_{\tau}, \tau \in \mathbb{R}_+)$ denotes the semi-group of Ornstein–Uhlenbeck on *W*, defined as

$$P_{\tau} f(w) = \int_{W} f(e^{-\tau} w + \sqrt{1 - e^{-2\tau}} y) \mu(dy).$$

Let us recall that $P_{\tau} = e^{-\tau \mathcal{L}}$, where \mathcal{L} is the number operator. We denote by ∇ the Sobolev derivative which is the extension (with respect to the Wiener measure) of the Fréchet derivative in the Cameron–Martin space direction. The iterates of ∇ are defined similarly. Note that, if f is real valued, then ∇f is a vector and if u is an H-valued map, then ∇u is a Hilbert–Schmidt (on H) operator valued map whenever defined. If Z is a separable Hilbert space and if $p > 1, k \in \mathbb{R}$, we denote by $\mathbb{D}_{p,k}(Z)$ the μ -equivalence classes of Z-valued measurable mappings ξ , defined on W such that $(I + \mathcal{L})^{k/2}\xi$ belongs to $L^p(\mu, Z)$ and this set, equipped with the norm

$$\|\xi\|_{p,k} = \left\| (I+\mathcal{L})^{k/2} \xi \right\|_{L^p(\mu,Z)} \tag{1}$$

becomes a Banach space. From the Meyer inequalities, we know that the norm defined by

$$\sum_{k=0}^{n} \left\| \nabla^{k} \xi \right\|_{L^{p}(\mu, Z \otimes H^{\otimes k})}, \quad n \in \mathbb{N},$$

is equivalent to the norm $\|\xi\|_{p,n}$ defined by (1). We denote by δ the adjoint of ∇ under μ and recall that, whenever $u \in \mathbb{D}_{p,0}(H)$ for some p > 1 is adapted, then δu is equal to the Itô integral of the Lebesgue density of u:

$$\delta u = \int_0^1 \dot{u}_s \, \mathrm{d} W_s.$$

2. A sufficient condition for invertibility

Assume that $u: W \to H$ is adapted, i.e., $u(t) = \int_0^t \dot{u}_s \, ds, t \in [0, 1]$ and that \dot{u}_s is \mathcal{F}_s -measurable for almost all $s \in [0, 1]$. We suppose that $\rho(-\delta u)$ defined as

$$\rho(-\delta u) = \exp\left[-\delta u - \frac{1}{2}|u|_{H}^{2}\right]$$

is the terminal value of a uniformly integrable martingale. We shall assume that u is in $\mathbb{D}_{2,0}(H)$. We have

Theorem 1. Assume that u satisfies the hypothesis above. For $\tau \in [0, 1]$, define u_{τ} as to be $P_{\tau}u$, where P_{τ} is the Ornstein–Uhlenbeck semigroup and assume also that $E[\rho(-\delta u_{\tau})] = 1$ for $\tau \in [0, 1]$. Then the adapted perturbation of identity $U = I_W + u$ is invertible provided that

$$E\left[\int_{0}^{1} \left| (I_H + \nabla u_\tau)^{-1} \mathcal{L} u_\tau \right|_H \rho(-\delta u_\tau) \,\mathrm{d}\tau \right] < \infty.$$
⁽²⁾

Proof. Note that the map u_{τ} is again adapted and $H - C^1$ (in fact it is even $H - C^{\infty}$, cf. [7]). This means that there exists a negligible set $N \subset W$ (in fact its capacity is null [6]) with $H + N \subset N$, such that, for any $w \in N^c$, the map $h \to u_{\tau}(w + h)$ is continuously Fréchet differentiable on H. Consequently $U_{\tau} = I_W + u_{\tau}$ satisfies the change of variables formula: for any $f \in C_b(W)$,

$$E[f \circ U_{\tau} \rho(-\delta u_{\tau})] = E[f(w)N_{\tau}(w)],$$

where N_{τ} is the multiplicity function of U_{τ} , namely the cardinality of the set $U_{\tau}^{-1}(\{w\})$ (cf. [7]). Since $E[\rho(-\delta u_{\tau})] = 1$, it follows that $N_{\tau} = 1 \mu$ -almost surely and this implies the existence of the inverse of U_{τ} which is denoted as V_{τ} . Note that V_{τ} is of the form $V_{\tau} = I_W + v_{\tau}$, where $v_{\tau} : W \to H$ and that the image of μ under V_{τ} , denoted as $V_{\tau}\mu$, is equivalent to μ with the Radon–Nikodym density

$$\frac{\mathrm{d}V_{\tau}\mu}{\mathrm{d}\mu} = \rho(-\delta u_{\tau}). \tag{3}$$

$$\frac{\mathrm{d}v_{\tau}}{\mathrm{d}\tau} = -\left((I_H + \nabla u_{\tau})^{-1}\mathcal{L}u_{\tau}\right) \circ V_{\tau}.$$
(4)

Since

$$|v_{\beta}-v_{\alpha}| \leqslant \int\limits_{\alpha}^{\beta} \left| \frac{\mathrm{d}v_{\tau}}{\mathrm{d}\tau} \right|_{H} \mathrm{d}\tau,$$

and since $L^0(\mu, H)$ is complete, in order to show that $\lim_{\alpha,\beta\to 0} \mu(\{|v_\alpha - v_\beta| > c\}) = 0$, for any c > 0, it suffices to show that

$$E\int_{0}^{\kappa}\left|\frac{\mathrm{d}v_{\tau}}{\mathrm{d}\tau}\right|\mathrm{d}\tau<\infty,$$

for some $\kappa > 0$. From the relations (3) and (4), we obtain

$$E \int_{\alpha}^{\beta} \left| \frac{\mathrm{d}v_{\tau}}{\mathrm{d}\tau} \right|_{H} \mathrm{d}\tau = E \int_{\alpha}^{\beta} \left| \left(\left(I_{H} + \nabla u_{\tau} \right)^{-1} \mathcal{L}u_{\tau} \right) \circ V_{\tau} \right|_{H} \mathrm{d}\tau \right|_{H} \mathrm{d}\tau$$
$$= E \int_{\alpha}^{\beta} \left| \left(I_{H} + \nabla u_{\tau} \right)^{-1} \mathcal{L}u_{\tau} \right|_{H} \rho(-\delta u_{\tau}) \mathrm{d}\tau$$

Hence the hypothesis (2) implies the existence of the limit $\lim_{\tau \to 0} v_{\tau}$ in $L^{1}(\mu, H)$ which we shall denote by v. Since $v_{\tau} = -u_{\tau} \circ V_{\tau}$ and since $(\rho(-\delta u_{\tau}), \tau \in [0, 1])$ is uniformly integrable, $V\mu$ is absolutely continuous with respect to μ and we have also the identity $v = -u \circ V$, where $V = I_{W} + v$. Now it is easy to see that $U \circ V = V \circ U = I_{W}$ μ -almost surely. \Box

Combining Theorem 1 with the inequality of T. Carleman (cf. [1] or [2], Corollary XI.6.28) which says:

$$\|\det_2(I_H + A)(I_H + A)^{-1}\| \leq \exp \frac{1}{2} (\|A\|_2^2 + 1),$$

for any Hilbert–Schmidt operator A, where the left hand side is the operator norm, $det_2(I_H + A)$ denotes the modified Carleman–Fredholm determinant and $\|\cdot\|_2$ denotes the Hilbert–Schmidt norm, we get

Theorem 2. Assume that $u \in \mathbb{D}_{2,1}(H)$ such that $E[\rho(-\delta u_{\tau})] = 1$ and that

$$E\left[e^{\frac{1}{2}\|\nabla u\|_{2}^{2}}\int_{0}^{1}P_{\tau}\left(\rho(-\delta u_{\tau})|\mathcal{L}u_{\tau}|_{H}\right)\mathrm{d}\tau\right]<\infty.$$

Then U satisfies the conclusions of Theorem 1.

Proof. The integrand in the relation (2) can be upperbounded as follows:

$$\left| (I_H + \nabla u_\tau)^{-1} \mathcal{L} u_\tau \right|_H \leq \exp \frac{1}{2} \left(\| \nabla u_\tau \|_2^2 + 1 \right) |\mathcal{L} u_\tau|_H$$
$$\leq |\mathcal{L} u_\tau|_H P_\tau \left(\exp \frac{1}{2} \left(\| \nabla u \|_2^2 + 1 \right) \right)$$

where the second line follows from the Jensen inequality. Here there is no term with det₂ since, ∇u_{τ} being quasinilpotent, its Carleman–Fredholm determinant is always equal to one. We then use the symmetry of P_{τ} with respect to μ . \Box **Corollary 1.** Suppose that *u* is adapted, $E[\rho(-\delta u_{\tau})] = 1$ for all $\tau \in [0, 1]$. Let $\varepsilon > 0$ be given and assume further that $u \in \mathbb{D}_{\underline{\varepsilon+1},2}(H)$ and that the following relation holds:

$$E\left[\left(1+\mathrm{e}^{-\mathrm{e}(1+\varepsilon)\delta u}\right)\exp\left(\frac{1+\varepsilon}{2}\|\nabla u\|_{2}^{2}\right)\right]<\infty.$$
(5)

Then $U = I_W + u$ *is* μ *-almost surely invertible.*

Proof. Let C_{ε} represent the left-hand side of the relation (5), then using the Hölder inequality we get

$$E\left[\int_{0}^{1} \left| (I_{H} + \nabla u_{\tau})^{-1} \mathcal{L} u_{\tau} \right|_{H} \rho(-\delta u_{\tau}) \, \mathrm{d}\tau \right] \leqslant C_{\varepsilon}^{\frac{1}{1+\varepsilon}} \|u\|_{\frac{1+\varepsilon}{\varepsilon},2}.$$

Hence the conclusion follows. \Box

Remark. If we take $\varepsilon = 1$ in Corollary 1, then it is easy to see, using the Wiener chaos expansion for $E[|\mathcal{L}P_{\tau}u|_{H}^{2}]$ that

$$E\int_0^1 |\mathcal{L}P_{\tau}u|_H^2 \,\mathrm{d}\tau \leqslant \|u\|_{2,1}^2.$$

Remark. In the case where *u* is not adapted, the condition (5) with $\varepsilon = 1$ is sufficient for the measure theoretic degree of the map *U* to be one as it is proven in Theorem 9.3.2 of [7].

References

- [1] T. Carleman, Zur Theorie der linearen Integralgleichungen, Math. Z. 9 (1921) 196-217.
- [2] N. Dunford, J.T. Schwartz, Linear Operators, vol. 2, Interscience, New York, 1967.
- [3] D. Feyel, A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier 41 (1) (1991) 49–76.

[4] P. Malliavin, Stochastic Analysis, Springer, 1997.

- [5] A.S. Üstünel, Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995.
- [6] A.S. Üstünel, Analysis on Wiener space and applications, Electronic text at the site, http://www.finance-research.net/.

[7] A.S. Üstünel, M. Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 1999.