The invertibility of adapted perturbations of identity on the Wiener space

A. Suleyman Üstünel ${ }^{\text {a }}$, Moshe Zakai ${ }^{\text {b }}$
${ }^{a}$ a ENST - Paris, Département Infres, 46, rue Barrault, 75013 Paris, France
${ }^{\mathrm{b}}$ Technion, Haifa, Department of Electrical Engineering, 32000 Haifa, Israel

Received 14 February 2006; accepted 22 February 2006
Available online 29 March 2006
Presented by Paul Malliavin

Abstract

Let (W, H, μ) be the classical Wiener space. Assume that $U=I_{W}+u$ is an adapted perturbation of identity, i.e., $u: W \rightarrow H$ is adapted to the canonical filtration of W. We give some sufficient analytic conditions on u which imply the invertibility of the map U. To cite this article: A.S. Üstünel, M. Zakai, C. R. Acad. Sci. Paris, Ser. I 342 (2006). © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L'inversibilité des perturbations d'identité adaptées sur l'espace de Wiener. Soit (W, H, μ) l'espace de Wiener. Soit $U=$ $I_{W}+u$ une perturbation d'identité adaptée, i.e., $u: W \rightarrow H$ est adaptée à la filtration canonique de W. Nous donnons quelques conditions suffisantes qui impliquent l'inversibilité de l'application U. Pour citer cet article : A.S. Üstünel, M. Zakai, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Preliminaries

Let $W=C_{0}([0,1])$ be the Banach space of continuous functions on $[0,1]$, with its Borel sigma field denoted by \mathcal{F}. We denote by H the Cameron-Martin space, namely the space of absolutely continuous functions on [0, 1] with square integrable Lebesgue density:

$$
H=\left\{h \in W: h(t)=\int_{0}^{t} \dot{h}(s) \mathrm{d} s,|h|_{H}^{2}=\int_{0}^{1}|\dot{h}(s)|^{2} \mathrm{~d} s<\infty\right\}
$$

μ denotes the classical Wiener measure on $(W, \mathcal{F}),\left(\mathcal{F}_{t}, t \in[0,1]\right)$ is the filtration generated by the paths of the Wiener process $(t, w) \rightarrow W_{t}(w)$, where $W_{t}(w)$ is defined as $w(t)$ for $w \in W$ and $t \in[0,1]$. We shall recall briefly

[^0]some well-known functional analytic tools on the Wiener space, we refer the reader to [4,3,5] or to [6] for further details: $\left(P_{\tau}, \tau \in \mathbb{R}_{+}\right)$denotes the semi-group of Ornstein-Uhlenbeck on W, defined as
$$
P_{\tau} f(w)=\int_{W} f\left(\mathrm{e}^{-\tau} w+\sqrt{1-\mathrm{e}^{-2 \tau}} y\right) \mu(\mathrm{d} y)
$$

Let us recall that $P_{\tau}=\mathrm{e}^{-\tau \mathcal{L}}$, where \mathcal{L} is the number operator. We denote by ∇ the Sobolev derivative which is the extension (with respect to the Wiener measure) of the Fréchet derivative in the Cameron-Martin space direction. The iterates of ∇ are defined similarly. Note that, if f is real valued, then ∇f is a vector and if u is an H-valued map, then ∇u is a Hilbert-Schmidt (on H) operator valued map whenever defined. If Z is a separable Hilbert space and if $p>1, k \in \mathbb{R}$, we denote by $\mathbb{D}_{p, k}(Z)$ the μ-equivalence classes of Z-valued measurable mappings ξ, defined on W such that $(I+\mathcal{L})^{k / 2} \xi$ belongs to $L^{p}(\mu, Z)$ and this set, equipped with the norm

$$
\begin{equation*}
\|\xi\|_{p, k}=\left\|(I+\mathcal{L})^{k / 2} \xi\right\|_{L^{p}(\mu, Z)} \tag{1}
\end{equation*}
$$

becomes a Banach space. From the Meyer inequalities, we know that the norm defined by

$$
\sum_{k=0}^{n}\left\|\nabla^{k} \xi\right\|_{L^{p}\left(\mu, Z \otimes H^{\otimes k}\right)}, \quad n \in \mathbb{N}
$$

is equivalent to the norm $\|\xi\|_{p, n}$ defined by (1). We denote by δ the adjoint of ∇ under μ and recall that, whenever $u \in \mathbb{D}_{p, 0}(H)$ for some $p>1$ is adapted, then δu is equal to the Itô integral of the Lebesgue density of u :

$$
\delta u=\int_{0}^{1} \dot{u}_{s} \mathrm{~d} W_{s}
$$

2. A sufficient condition for invertibility

Assume that $u: W \rightarrow H$ is adapted, i.e., $u(t)=\int_{0}^{t} \dot{u}_{s} \mathrm{~d} s, t \in[0,1]$ and that \dot{u}_{s} is \mathcal{F}_{s}-measurable for almost all $s \in[0,1]$. We suppose that $\rho(-\delta u)$ defined as

$$
\rho(-\delta u)=\exp \left[-\delta u-\frac{1}{2}|u|_{H}^{2}\right]
$$

is the terminal value of a uniformly integrable martingale. We shall assume that u is in $\mathbb{D}_{2,0}(H)$. We have
Theorem 1. Assume that u satisfies the hypothesis above. For $\tau \in[0,1]$, define u_{τ} as to be $P_{\tau} u$, where P_{τ} is the Ornstein-Uhlenbeck semigroup and assume also that $E\left[\rho\left(-\delta u_{\tau}\right)\right]=1$ for $\tau \in[0,1]$. Then the adapted perturbation of identity $U=I_{W}+u$ is invertible provided that

$$
\begin{equation*}
E\left[\int_{0}^{1}\left|\left(I_{H}+\nabla u_{\tau}\right)^{-1} \mathcal{L} u_{\tau}\right|_{H} \rho\left(-\delta u_{\tau}\right) \mathrm{d} \tau\right]<\infty . \tag{2}
\end{equation*}
$$

Proof. Note that the map u_{τ} is again adapted and $H-C^{1}$ (in fact it is even $H-C^{\infty}$, cf. [7]). This means that there exists a negligible set $N \subset W$ (in fact its capacity is null [6]) with $H+N \subset N$, such that, for any $w \in N^{c}$, the map $h \rightarrow u_{\tau}(w+h)$ is continuously Fréchet differentiable on H. Consequently $U_{\tau}=I_{W}+u_{\tau}$ satisfies the change of variables formula: for any $f \in C_{b}(W)$,

$$
E\left[f \circ U_{\tau} \rho\left(-\delta u_{\tau}\right)\right]=E\left[f(w) N_{\tau}(w)\right]
$$

where N_{τ} is the multiplicity function of U_{τ}, namely the cardinality of the set $U_{\tau}^{-1}(\{w\})$ (cf. [7]). Since $E\left[\rho\left(-\delta u_{\tau}\right)\right]=$ 1, it follows that $N_{\tau}=1 \mu$-almost surely and this implies the existence of the inverse of U_{τ} which is denoted as V_{τ}. Note that V_{τ} is of the form $V_{\tau}=I_{W}+v_{\tau}$, where $v_{\tau}: W \rightarrow H$ and that the image of μ under V_{τ}, denoted as $V_{\tau} \mu$, is equivalent to μ with the Radon-Nikodym density

$$
\begin{equation*}
\frac{\mathrm{d} V_{\tau} \mu}{\mathrm{d} \mu}=\rho\left(-\delta u_{\tau}\right) \tag{3}
\end{equation*}
$$

We also have $v_{\tau}=-u_{\tau} \circ V_{\tau}$. We shall prove that $\lim _{\tau \rightarrow 0} v_{\tau}$ exists in $L^{0}(\mu, H)$. Note that $\tau \rightarrow v_{\tau}$ is differentiable on $(0,1)$ and we have

$$
\begin{equation*}
\frac{\mathrm{d} v_{\tau}}{\mathrm{d} \tau}=-\left(\left(I_{H}+\nabla u_{\tau}\right)^{-1} \mathcal{L} u_{\tau}\right) \circ V_{\tau} \tag{4}
\end{equation*}
$$

Since

$$
\left|v_{\beta}-v_{\alpha}\right| \leqslant \int_{\alpha}^{\beta}\left|\frac{\mathrm{d} v_{\tau}}{\mathrm{d} \tau}\right|_{H} \mathrm{~d} \tau
$$

and since $L^{0}(\mu, H)$ is complete, in order to show that $\lim _{\alpha, \beta \rightarrow 0} \mu\left(\left\{\left|v_{\alpha}-v_{\beta}\right|>c\right\}\right)=0$, for any $c>0$, it suffices to show that

$$
E \int_{0}^{\kappa}\left|\frac{\mathrm{d} v_{\tau}}{\mathrm{d} \tau}\right| \mathrm{d} \tau<\infty
$$

for some $\kappa>0$. From the relations (3) and (4), we obtain

$$
\begin{aligned}
E \int_{\alpha}^{\beta}\left|\frac{\mathrm{d} v_{\tau}}{\mathrm{d} \tau}\right|_{H} \mathrm{~d} \tau & =E \int_{\alpha}^{\beta}\left|\left(\left(I_{H}+\nabla u_{\tau}\right)^{-1} \mathcal{L} u_{\tau}\right) \circ V_{\tau}\right|_{H} \mathrm{~d} \tau \\
& =E \int_{\alpha}^{\beta}\left|\left(I_{H}+\nabla u_{\tau}\right)^{-1} \mathcal{L} u_{\tau}\right|_{H} \rho\left(-\delta u_{\tau}\right) \mathrm{d} \tau
\end{aligned}
$$

Hence the hypothesis (2) implies the existence of the limit $\lim _{\tau \rightarrow 0} v_{\tau}$ in $L^{1}(\mu, H)$ which we shall denote by v. Since $v_{\tau}=-u_{\tau} \circ V_{\tau}$ and since $\left(\rho\left(-\delta u_{\tau}\right), \tau \in[0,1]\right)$ is uniformly integrable, $V \mu$ is absolutely continuous with respect to μ and we have also the identity $v=-u \circ V$, where $V=I_{W}+v$. Now it is easy to see that $U \circ V=V \circ U=I_{W}$ μ-almost surely.

Combining Theorem 1 with the inequality of T. Carleman (cf. [1] or [2], Corollary XI.6.28) which says:

$$
\left\|\operatorname{det}_{2}\left(I_{H}+A\right)\left(I_{H}+A\right)^{-1}\right\| \leqslant \exp \frac{1}{2}\left(\|A\|_{2}^{2}+1\right)
$$

for any Hilbert-Schmidt operator A, where the left hand side is the operator norm, $\operatorname{det}_{2}\left(I_{H}+A\right)$ denotes the modified Carleman-Fredholm determinant and $\|\cdot\|_{2}$ denotes the Hilbert-Schmidt norm, we get

Theorem 2. Assume that $u \in \mathbb{D}_{2,1}(H)$ such that $E\left[\rho\left(-\delta u_{\tau}\right)\right]=1$ and that

$$
E\left[\mathrm{e}^{\frac{1}{2}\|\nabla u\|_{2}^{2}} \int_{0}^{1} P_{\tau}\left(\rho\left(-\delta u_{\tau}\right)\left|\mathcal{L} u_{\tau}\right|_{H}\right) \mathrm{d} \tau\right]<\infty
$$

Then U satisfies the conclusions of Theorem 1 .
Proof. The integrand in the relation (2) can be upperbounded as follows:

$$
\begin{aligned}
\left|\left(I_{H}+\nabla u_{\tau}\right)^{-1} \mathcal{L} u_{\tau}\right|_{H} & \leqslant \exp \frac{1}{2}\left(\left\|\nabla u_{\tau}\right\|_{2}^{2}+1\right)\left|\mathcal{L} u_{\tau}\right|_{H} \\
& \leqslant\left|\mathcal{L} u_{\tau}\right|_{H} P_{\tau}\left(\exp \frac{1}{2}\left(\|\nabla u\|_{2}^{2}+1\right)\right),
\end{aligned}
$$

where the second line follows from the Jensen inequality. Here there is no term with det_{2} since, ∇u_{τ} being quasinilpotent, its Carleman-Fredholm determinant is always equal to one. We then use the symmetry of P_{τ} with respect to μ.

Corollary 1. Suppose that u is adapted, $E\left[\rho\left(-\delta u_{\tau}\right)\right]=1$ for all $\tau \in[0,1]$. Let $\varepsilon>0$ be given and assume further that $u \in \mathbb{D}_{\frac{\varepsilon+1}{\varepsilon}, 2}(H)$ and that the following relation holds:

$$
\begin{equation*}
E\left[\left(1+\mathrm{e}^{-\mathrm{e}(1+\varepsilon) \delta u}\right) \exp \left(\frac{1+\varepsilon}{2}\|\nabla u\|_{2}^{2}\right)\right]<\infty \tag{5}
\end{equation*}
$$

Then $U=I_{W}+u$ is μ-almost surely invertible.
Proof. Let C_{ε} represent the left-hand side of the relation (5), then using the Hölder inequality we get

$$
E\left[\int_{0}^{1}\left|\left(I_{H}+\nabla u_{\tau}\right)^{-1} \mathcal{L} u_{\tau}\right|_{H} \rho\left(-\delta u_{\tau}\right) \mathrm{d} \tau\right] \leqslant C_{\varepsilon}^{\frac{1}{1+\varepsilon}}\|u\|_{\frac{1+\varepsilon}{\varepsilon}, 2}
$$

Hence the conclusion follows.
Remark. If we take $\varepsilon=1$ in Corollary 1 , then it is easy to see, using the Wiener chaos expansion for $E\left[\left|\mathcal{L} P_{\tau} u\right|_{H}^{2}\right]$ that

$$
E \int_{0}^{1}\left|\mathcal{L} P_{\tau} u\right|_{H}^{2} \mathrm{~d} \tau \leqslant\|u\|_{2,1}^{2}
$$

Remark. In the case where u is not adapted, the condition (5) with $\varepsilon=1$ is sufficient for the measure theoretic degree of the map U to be one as it is proven in Theorem 9.3.2 of [7].

References

[1] T. Carleman, Zur Theorie der linearen Integralgleichungen, Math. Z. 9 (1921) 196-217.
[2] N. Dunford, J.T. Schwartz, Linear Operators, vol. 2, Interscience, New York, 1967.
[3] D. Feyel, A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier 41 (1) (1991) 49-76.
[4] P. Malliavin, Stochastic Analysis, Springer, 1997.
[5] A.S. Üstünel, Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995.
[6] A.S. Üstünel, Analysis on Wiener space and applications, Electronic text at the site, http://www.finance-research.net/.
[7] A.S. Üstünel, M. Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 1999.

[^0]: E-mail addresses: ustunel@enst.fr (A.S. Üstünel), zakai@ee.technion.ac.il (M. Zakai).
 1631-073X/\$ - see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2006.02.031

