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Abstract

Associated to a smooth foliation (M,F ) are defined the basic and the foliated cohomologies. These cohomologies are related
to the de Rham cohomology by the de Rham spectral sequence of F , E

s,t
r,dR

(M), constructed by filtering the de Rham complex

of the manifold. For a Riemannian foliation on a compact manifold the second term of this spectral sequence, E
s,t
2,dR

(M), is finite
dimensional and a topological invariant.

In this Note we prove these two results, fitness dimension and topological invariance, for the cohomology of singular Riemannian
foliations. The proof uses the previous theorems for the regular case and the structure of singular Riemannian foliations described
by P. Molino. For the basic cohomology these results have been proved by R. Wolak. To cite this article: X.M. Masa, A. Rodríguez-
Fernández, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Cohomologie des feuilletages riemanniens singuliers. La filtration du complexe de De Rham d’une variété feuilletée (M,F )

définit une suite spectrale E
s,t
r,dR

(M) reliant les cohomologies basique et feuilletée du feuilletage F à la cohomologie de De Rham
de la variété ambiance. Pour un feuilletage riemannien d’une variété compacte le deuxième terme de cette suite spectrale est un
invariant topologique de dimension finie.

Dans cette Note, nous prouvons la finitude et l’invariance topologique de ce terme pour les feuilletages riemanniens singuliers.
La preuve combine les résultats du cas régulier avec la description de la structure des feuilletages riemanniens singuliers faite
par P. Molino. Pour la cohomologie basique, ces résultats ont été prouvés par R. Wolak. Pour citer cet article : X.M. Masa,
A. Rodríguez-Fernández, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Preliminaries

1.1. Singular Riemannian foliations (see [3, Chapter 6])

We assume that the manifold M is compact. A singular Riemannian foliation on M is a partition F of M by
connected immersed submanifolds, the leaves, such that the module of smooth fields tangent to the leaves is transi-
tive on each leaf and there exists a Riemannian metric that is adapted to F in the sense that every geodesic that is
perpendicular at one point to a leaf remains perpendicular to every leaf it meets.

We denote by �F the partition of M by leaf closures and by M/�F the corresponding quotient space. The map
p :M → M/�F has the following good local property. Let x be a point of M/�F , X = p−1(x). The foliation F defines
on X a regular Riemannian foliation FX with dense leaves and X has a base of saturated tubular neighborhoods,
X̃ ×π V , quotient of X̃ × V by the diagonal action of π = π1(X), where X̃ is the universal covering space of X and
V is an open set of R

k , k the codimension of X in M , and where π acts on V by linear isometries.
The homothetic lemma [3] states that X and X̃ ×π V are homotopically equivalent by homotopies that preserve the

foliation, in the sense that each leaf goes into a leaf for each parameter of the homotopy. The homotopy equivalences
are the protection p : X̃ ×π V → X and the zero section s0 :X → X̃ ×π V .

The open sets p(X̃ ×π V ) will be called adapted open sets in M/�F . A cover by adapted open sets is said to be
good if any finite nonempty intersection is also adapted (for its existence, see [4, Proposition 1]).

1.2. The Čech complex

Let W be a topological space, L a sheaf on W and U = {Uα; α ∈ I } an open cover of W . We shall use σn to denote
an ordered n-simplex 〈α0, . . . , αn〉 of the nerve N(U) of U, and Uσn to denote Uα0,...,αn = Uαo ∩ · · · ∩ Uαn . We define
the Čech complex of U with coefficients in L as

Čn(U;L) =
∏
σn

L(Uσn),

with the usual differential

δ :Cn(U,L) −→ Cn+1(U,L),

(δw)α0···αn+1 =
n+1∑
i=0

(−1)ij∗
i wα0···α̂i ···αn+1,

where ji denotes the inclusion U〈α0,...,αn+1〉 → U〈α0,...,α̂i ,...,αn+1〉.
If we start with a differential sheaf (L∗, d), we get a double complex Č∗(U;L∗) and two associated spectral

sequences,

IE
s,t
2 = Ȟ s

(
U,Ht

(
L∗)) and IIE

s,t
2 = Hs

(
Ht

(
U,L∗)).

We are interested in the case where L∗ is acyclic, then Ht(U,L∗) = Ht(W,L∗) = 0 for t > 0 and we have

IE
s,t
2 = Ȟ s

(
U,Ht

(
L∗)) ⇒ Hs+t

(
Γ

(
L∗)). (1)

1.3. Alexander–Spanier spectral sequence [2]

Let X be a topological space, and X′ the same set as X with a finer topology. Let U be an open set in X. A map

ϕ :Up+1 → R

is said to be a basic Alexander–Spanier p-cochain in U if it is locally constant when one considers in Up+1 the
topology induced by X′.

For each U , the vector space of basic Alexander–Spanier cochains in U , with the obvious restriction maps, defines
a presheaf, which generates the sheaf of basic Alexander–Spanier cochains AS∗

(X′|X)
. With the usual differential

δϕ(x0, . . . , xp) =
p∑

(−1)iϕ(x0, . . . , x̂i , . . . , xp) (2)

i=0
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we have a resolution of the constant sheaf RX and the Alexander–Spanier spectral sequence of (X′|X),

E
p,q

2 (X′ | X) = HpHq
(
X,AS�

(X′|X)

) ⇒ Hp+q(X,R). (3)

One can consider only continuous or differentiable Alexander–Spanier cochains, to get a continuous or differentiable
resolution, respectively, and the corresponding spectral sequences. Let (M,F) be a foliated manifold, M = ⋃

x∈M Lx .
Denote by MF the set M with the leaf topology: a basis is formed by the connected components of intersections of
open sets of M with leaves. The Alexander–Spanier sheaf and the spectral sequence of the foliated manifold will be
the one associated to (MF | M). We use the notation

contAS∗
F , diffAS∗

F

for the continuous and differentiable Alexander–Spanier sheaves, respectively, and

E
p,q
r,cont(M) and E

p,q

r,diff(M)

for the corresponding spectral sequences.

2. Finiteness of E2,dR(M)

The de Rham spectral sequence of F , E
p,q
r,dR(M), can be obtained from the resolution of the constant sheaf RM

given by the sheaves of basic forms, (AF , d). In fact, E
p,q
r,dR(M) ∼= HpHq(M,A∗

F ).

Let Hq(p,At
F ) be the sheaf in M/�F defined by

Hq
(
p,At

F
)
(U) = Hq

(
p−1(U),At

F
)

for an open set U ⊂ M/�F . It is the derived sheaf of At
F . With the differential induced by d , Hq(p,A∗

F ) is a differential
sheaf. As H0(p,A0

F ) is soft, and the sheaves Hq(p,At
F ) are H0(p,A0

F )-modules, they are acyclic.

Theorem 2.1. The second term of the de Rham spectral sequence of a singular Riemannian foliation is finite dimen-
sional.

We consider a finite good cover U of M/�F . We consider the double complex Čs(U,Hq(p,At
F )) and the spectral

sequence

E
s,t
2 = Ȟ s

(
U,Ht

(
Hq

(
p,A∗

F
))) ⇒ E

s+t,q

2,dR (M).

Now, for any Uσ , σ ∈ N(U), denote by Xσ the leaf closure such that p−1(Uσ ) is homotopically equivalent to it. We
have

Ht
(
Hq

(
p,A∗

F
))

(U) = E
t,q

2,dR

(
p−1(U)

) ∼= E
t,q

2,dR(Xσ ).

The foliation on Xσ being regular, E
t,q

2,dR(X) is finite dimensional [1]. As a consequence, already the complex

Čs(U,Ht (Hq(p,A∗
F ))) is finite dimensional, so Ȟ s(U,Ht (Hq(p,A∗

F ))) and E
s+t,q

2 (F) are finite dimensional.

3. Topological invariance of E2(F)

Theorem 3.1. The de Rham spectral sequence of a singular Riemannian foliation is a topological invariant from E2
onwards.

For each differential sheaf A∗
F , diffAS∗

F and contAS∗
F , and each q � 0, we have three spectral sequences of

the type (1), constructed with the Čech complex associated to a good cover U of M/�F and to the derived sheaves
Hq(p,A∗

F ), Hq(p, diffAS∗
F ) and Hq(p, contAS∗

F ). These spectral sequences are

Ȟ s
(
U,Ht

(
Hq

(
p,A∗

F
))) ⇒ E

s+t,q

2,dR (M),

Ȟ s
(
U,Ht

(
Hq

(
p, diffAS∗ ))) ⇒ E

s+t,q
(M),
F 2,diff
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and

Ȟ s
(
U,Ht

(
Hq

(
p, contAS∗

F
))) ⇒ E

s+t,q

2,cont(M).

We are going to prove that all of them are isomorphic to each other from E1 onwards. But the latter, constructed with
contAS∗

F , is obviously invariant by homeomorphisms, and so the theorem follows.
Let I : diffAS∗

F → contAS∗
F be the inclusion map. We define another homomorphism of differential sheaves

Λ : diffAS∗
F →A∗

F in a standard way: for an open set U of M , for x ∈ U and Z1, . . . ,Zp ∈ TxM ,

Λ(ϕ)x(Z1, . . . ,Zp) = 1

p!
∑
τ∈Sp

sgn(τ )
∂

∂ε1
· · · ∂

∂εp

ϕ(x, expx ε1Zτ(1), . . . , expx εpZτ(p))|εi=0,

where εi ∈ R,1 � i � p.
The homomorphisms I and Λ induced isomorphisms between the sheaf Ht (Hq(p, diffAS∗

F ) and the sheaves
Ht (Hq(p,A∗

F ) and Ht (Hq(p, contAS∗
F ), respectively. To prove that, we compute their stacks. Let U be an adapted

open set such that p−1(U) is a tubular neighborhood of X = p−1(x). By the same argument of the proof of Theorem 1,
we see that the space of sections over U of these sheaves are

E
t,q

2,diff

(
p−1(U)

) ∼= E
t,q

2,diff(X), E
t,q

2,dR

(
p−1(U)

) ∼= E
t,q

2,dR(X),

and

E
t,q

2,cont

(
p−1(U)

) ∼= E
t,q

2,cont(X).

But on X the foliation is Riemannian regular, so the homomorphisms I and Λ induce isomorphisms between the
second terms of the spectral sequences [2].
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