

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 685-688

http://france.elsevier.com/direct/CRASS1/

Probability Theory

A generalized existence theorem of BSDEs

Guangyan Jia

School of Mathematics and System Sciences, Shandong University, Jinan, Shandong, 250100, P.R. China

Received 29 March 2005; accepted after revision 21 February 2006

Available online 22 March 2006

Presented by Paul Malliavin

Abstract

In this Note, we deal with one-dimensional backward stochastic differential equations (BSDEs) where the coefficient is left-Lipschitz in y (may be discontinuous) and Lipschitz in z, but without explicit growth constraint. We prove, in this setting, an existence theorem for backward stochastic differential equations. To cite this article: G. Jia, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un théorème d'existence généralisé des EDSRs. Dans cette Note, nous traitons l'équation différentielle stochastique rétrograde en une dimension, où le coéfficient est Lipschitzien à gauche en y (peut-être discontinu) et Lipschitzien en z, sans croissance contrainte explicite. Nous montrons, dans ce cas, un théorème d'existence de la solution pour équation différentielle stochastique rétrograde. Pour citer cet article : G. Jia, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

One-dimensional BSDEs are equations of the following type defined on [0, T]:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) \,\mathrm{d}s - \int_t^T z_s \,\mathrm{d}W_s, \quad 0 \leqslant t \leqslant T, \tag{1}$$

where $(W_t)_{0 \le t \le T}$ is a standard *d*-dimensional Brownian motion on a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, P)$ with $(\mathcal{F}_t)_{0 \leq t \leq T}$ the filtration generated by W. The function $g: \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is generally called a generator of (1), here T is the terminal time, and the \mathbb{R} -valued \mathcal{F}_T -adapted random variable ξ is a terminal condition; (g, T, ξ) are the parameters of (1).

A solution is a couple $(y_t, z_t)_{0 \le t \le T}$ of processes adapted to filtration $(\mathcal{F}_t)_{0 \le t \le T}$ which have some integrability properties, depending on the framework imposed by the type of assumptions on g.

E-mail address: jiagy@sdu.edu.cn (G. Jia).

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2006.02.020

Nonlinear BSDEs were first introduced by Pardoux and Peng [5], who proved the existence and uniqueness of a solution under assumptions on g and ξ , the most important of which are the Lipschitz continuity of g on (y, z) and the square integrability of ξ . Since then, BSDEs have been studied with great interest. In particular, many efforts have been made to relax the assumption on the generator g; for instance, Lepeltier and San Martin [3] have proved the existence of a solution for (1) when g is only continuous in (y, z) with linear growth, and Kobylanski [2] obtained the existence and uniqueness of a solution when g is continuous and has a quadratic growth in z and the terminal condition ξ is bounded.

In this Note, we mainly deal with one-dimensional BSDEs associated with coefficient which may be discontinuous in y, and without explicit growth constraint. In fact, we show that the one-dimensional BSDE associated with (g, T, ξ) has at least a solution if g satisfies the following conditions:

- H1. $g(t, \cdot, z)$ is left-continuous, and $g(t, y, \cdot)$ is Lipschitz continuous, i.e., there exists a positive constant A, such that $|g(t, y, z_1) g(t, y, z_2)| \leq A|z_1 z_2|$, for all $t \in [0, T]$, $y \in \mathbb{R}$, $z_1, z_2 \in \mathbb{R}^d$.
- H2. there exist two BSDEs with generators g_1 , g_2 respectively, such that $g_1(t, y, z) \leq g(t, y, z) \leq g_2(t, y, z)$, for all $t \in [0, T]$, $y \in \mathbb{R}$, $z \in \mathbb{R}^d$, and for given T and ξ , the equations (g_1, T, ξ) and (g_2, T, ξ) have at least one solution respectively, denoted by $\{Y_t^i, Z_t^i\}$, i = 1, 2, where $Y_t^1 \leq Y_t^2$, for $t \in [0, T]$, a.s., a.e. Moreover, the processes $g_i(t, Y_t^i, Z_t^i)$ are square integrable.
- H3. $g(t, \cdot, z)$ satisfies left Lipschitz condition in y, i.e., $g(t, y_1, z) g(t, y_2, z) \ge -A(y_1 y_2)$, for all $y_1 \ge y_2$, $z \in \mathbb{R}^d$ and $t \in [0, T]$.

Remark 1. We can find an inverse version of H3 in [4], where Pardoux studied multidimensional BSDEs, and he assumed that g satisfies

$$\left\langle x - y, g(t, x, z) - g(t, y, z) \right\rangle \leqslant A |x - y|^2.$$
⁽²⁾

In 1-dimensional case, (2) can be rewritten as $g(t, x, z) - g(t, y, z) \le A(x - y)$ for all $t \in [0, T]$, $z \in \mathbb{R}^d$ and $x \ge y$. Clearly, (2) implies uniqueness of solution. By Theorem 5, we will prove that H3 implies existence of solution. The combination of H3 with (2) is Lipschitz continuity of g in y in 1-dimensional case.

Remark 2. Obviously, we do not know whether Eq. (1) satisfying H1–H3 has solution or not by the results of [2,3] or [4], even if g is continuous in y, for example,

$$y_t = \xi + \int_t^T \left(\mathbf{sgn}(y_s) y_s^2 + \sin(|z_s|) \right) ds - \int_t^T z_s \, dW_s, \quad t \in [0, T],$$
(3)

where sgn(y) = -1 when $y \le 0$, otherwise sgn(y) = 1. But we know that (3) has solution for some ξ and T by Theorem 5.

This Note is organized as follows. In Section 2 we formulate the problem accurately and give some preliminary results. Finally, Section 3 is devoted to the proof of the main theorem.

2. Preliminaries

Let T > 0 be a fixed terminal time and $W = (W_t)_{0 \le t \le T}$ a *d*-dimensional Brownian motion defined on a probability space (Ω, \mathcal{F}, P) , whose natural filtration is denoted $(\mathcal{F}_t)_{0 \le t \le T}$, where $\mathcal{F}_t = \sigma\{W_s, s \le t\}$. Let \mathcal{P} be the σ -field on $\Omega \times [0, T]$ of \mathcal{F}_t -progressively measurable sets. Let \mathcal{H}_n^2 be the set of \mathcal{P} -measurable processes $V = (V_t)_{0 \le t \le T}$ with values in \mathbb{R}^n such that $E[\int_0^T |V_s|^2 ds] < \infty$, and let S^2 be the set of continuous \mathcal{P} -measurable processes $V = (V_t)_{0 \le t \le T}$ $(V_t)_{0 \le t \le T}$ with values in \mathbb{R} such that $E[\sup_{t \in [0,T]} |V_t|^2] < \infty$.

Now, let $\xi \in L^2(\Omega, \mathcal{F}_T, P)$ be a terminal value, $g: \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ the generator, such that the process $(g(\omega, t, 0, 0))_{t \in [0,T]} \in \mathcal{H}_1^2$ and, for any $(y, z) \in \mathbb{R} \times \mathbb{R}^d$, $(g(\omega, t, y, z))_{t \in [0,T]}$ is \mathcal{P} -measurable.

A solution of such an equation (g, T, ξ) is a \mathcal{P} -measurable process $(y, z) = (y_t, z_t)_{t \in [0,T]}$ valued in $\mathbb{R} \times \mathbb{R}^d$ such that

$$y_t = \xi + \int_t^T g(s, y_s, z_s) \,\mathrm{d}s - \int_t^T z_s \,\mathrm{d}W_s, \quad 0 \le t \le T,$$
(4)

where $(y, z) \in S^2 \times H^2_d$. Also we need one lemma, which is a special case of the well-known Comparison Theorem (see [6,1]).

Lemma 3. Suppose that $f_1(s, y, z) = ly + m ||z||$, $f_2(s, y, z) = l|y| + m ||z||$ for some constants $l, m \in \mathbb{R}$, and $\phi_s \in \mathcal{H}_1^2$ is a non-negative process, moreover, (y_t^i, z_t^i) are the solutions of the BSDEs $(f_i + \phi_t, T, \xi)$ for i = 1, 2. If $\xi \in L^2(\Omega, \mathcal{F}_T, P)$, and $\xi \ge 0$ a.s., then $y_t^i \ge 0$, P-a.s., i = 1, 2.

3. Existence

In this section we consider the existence of BSDE (4) under the assumption H1–H3. At first, we denote that (Y_t^j, Z_t^j) are the solutions of (g_j, T, ξ) , where j = 1, 2, that is

$$Y_{t}^{j} = \xi + \int_{t}^{T} g_{j}(s, Y_{s}^{j}, Z_{s}^{j}) \,\mathrm{d}s - \int_{t}^{T} Z_{s}^{j} \,\mathrm{d}W_{s},$$
(5)

where g_j satisfies H2 and $g_j(t, Y_t^j, Z_t^j) \in \mathcal{H}_1^2$. Now we construct a sequence of BSDEs as follows:

$$\underline{y}_{t}^{i} = \xi + \int_{t}^{T} \left(g\left(s, \underline{y}_{s}^{i-1}, \underline{z}_{s}^{i-1}\right) - A\left(\underline{y}_{s}^{i} - \underline{y}_{s}^{i-1}\right) - A\left\|\underline{z}_{s}^{i} - \underline{z}_{s}^{i-1}\right\| \right) \mathrm{d}s - \int_{t}^{T} \underline{z}_{s}^{i} \,\mathrm{d}W_{s},\tag{6}$$

where i = 1, ... and $(\underline{y}_t^0, \underline{z}_t^0) = (Y_t^1, Z_t^1)$. Obviously, Eqs. (6) (i = 1, 2, ...) have an unique adapted solution respectively if $g(s, \underline{y}_s^{i-1}, \underline{z}_s^{i-1}) \in \mathcal{H}_1^2$. For these equations, we have:

Lemma 4. Under Assumption H1–H3, the following properties hold true (1) For any positive integer *i*, Eq. (6) has a unique adapted solution $(\underline{y}_t^i, \underline{z}_t^i) \in S^2 \times \mathcal{H}_d^2$. (2) For any positive integer *i*, $Y_t^1 \leq \underline{y}_t^i \leq \underline{y}_t^{i+1} \leq Y_t^2$.

Proof. Firstly, we prove that (1) and (2) hold true for i=1. By $Y_t^2 \ge Y_t^1$ and H2, it follows that $g(t, Y_t^2, Z_t^2) - g(t, Y_t^1, Z_t^1) \ge -A(Y_t^2 - Y_t^1) - A || Z_t^2 - Z_t^1 ||$. Thus $g_2(t, Y_t^2, Z_t^2) + A(Y_t^2 - Y_t^1) + A || Z_t^2 - Z_t^1 || \ge g(t, Y_t^2, Z_t^2) + A(Y_t^2 - Y_t^1) + A || Z_t^2 - Z_t^1 || \ge g(t, Y_t^2, Z_t^2) + A(Y_t^2 - Y_t^1) + A || Z_t^2 - Z_t^1 || \ge g(t, Y_t^1, Z_t^1) \ge g_1(t, Y_t^1, Z_t^1)$. This implies that $g(t, Y_t^1, Z_t^1) \in \mathcal{H}_1^2$ and Eq. (6) has a unique adapted solution (y_t^1, Z_t^1) .

Now, by (6) and (5) when i = 1 and j = 1, $\underline{y}_t^1 - Y_t^1 = \int_t^T (-A(\underline{y}_s^1 - Y_s^1) - A \| \underline{z}_s^1 - Z_s^1 \| + \phi_s^1) \, ds - \int_t^T (\underline{z}_s^1 - Z_s^1) \, dW_s$, where $\phi_s^1 := g(s, Y_s^1, Z_s^1) - g_1(s, Y_s^1, Z_s^1) \ge 0$ and $\phi_s^1 \in \mathcal{H}_1^2$, using Lemma 3, we have $\underline{y}_t^1 \ge Y_t^1$.

Again we consider Eqs. (6) and (5) when i = 1 and j = 2, $Y_t^2 - \underline{y}_t^1 = \int_t^T (-A(Y_s^2 - \underline{y}_s^1) - A \|Z_s^2 - \underline{z}_s^1\| + \psi_s^1) ds - \int_t^T (Z_s^2 - \underline{z}_s^1) dW_s$, where $\psi_s^1 := A(Y_s^2 - Y_s^1) + A \|Z_s^2 - \underline{z}_s^1\| + g_2(s, Y_s^2, Z_s^2) - g(s, Y_s^1, Z_s^1) + A \|\underline{z}_s^1 - Z_s^1\| \ge g(s, Y_s^2, Z_s^2) - g(s, Y_s^1, Z_s^1) + A(Y_s^2 - Y_s^1) + A \|Z_s^2 - Z_s^1\| \ge 0$. Obviously, $\psi_s^1 \in \mathcal{H}_1^2$, by the comparison theorem, we have $Y_t^2 \ge \underline{y}_t^1$. Thus, we get (1), (2) whenever i = 1. That is, $Y_t^1 \le \underline{y}_t^1 \le Y_t^2$ and $g(t, Y_t^1, Z_t^1) \in \mathcal{H}_1^2$.

Similarly, $g_2(t, Y_t^2, Z_t^2) - g(t, y_t^1, z_t^1) \ge g(t, Y_t^2, Z_t^2) - g(t, y_t^1, z_t^1) \ge -A(Y_t^2 - y_t^1) - A \|Z_t^2 - z_t^1\|$. So, we have $g_2(t, Y_t^2, Z_t^2) + A(Y_t^2 - y_t^1) + A \|Z_t^2 - z_t^1\| \ge g(t, y_t^1, z_t^1)$. But $g(t, y_t^1, z_t^1) \ge g_1(t, Y_t^1, Z_t^1) - A(y_t^1 - Y_t^1) - A \|z_t^1 - Z_t^1\|$, this implies that $g(t, y_t^1, z_t^1) \in \mathcal{H}_1^2$ and Eq. (6) has a unique adapted solution when i = 2. Using the similar method, we get $y_t^2 \ge y_t^1$ and $y_t^2 \le Y_t^2$.

Now we assume that $Y_t^1 \leq \underline{y}_t^{i-1} \leq \underline{y}_t^i \leq Y_t^2$ and $g(t, \underline{y}_t^{i-1}, \underline{z}_t^{i-1}) \in \mathcal{H}_1^2$, we consider Eq. (6) for i + 1, which can be written as

$$\underline{y}_{t}^{i+1} = \xi + \int_{t}^{T} \left(g\left(s, \underline{y}_{s}^{i}, \underline{z}_{s}^{i}\right) - A\left(\underline{y}_{s}^{i+1} - \underline{y}_{s}^{i}\right) - A\left\|\underline{z}_{s}^{i+1} - \underline{z}_{s}^{i}\right\| \right) \mathrm{d}s - \int_{t}^{T} \underline{z}_{s}^{i+1} \,\mathrm{d}W_{s},\tag{7}$$

here $g_2(t, Y_t^2, Z_t^2) - g(t, \underline{y}_t^i, \underline{z}_t^i) \ge g(t, Y_t^2, Z_t^2) - g(t, \underline{y}_t^i, \underline{z}_t^i) \ge -A(Y_t^2 - \underline{y}_t^i) - A \|Z_t^2 - \underline{z}_t^i\|, g_2(t, Y_t^2, Z_t^2) + A(Y_t^2 - \underline{y}_t^i) + A \|Z_t^2 - \underline{z}_t^i\| \ge g(t, \underline{y}_t^i, \underline{z}_t^i)$ and $g(t, \underline{y}_t^i, \underline{z}_t^i) \ge g(t, Y_t^1, Z_t^1) - A(\underline{y}_t^i - Y_t^1) - A \|\underline{z}_t^i - Z_t^1\| \ge g_1(t, Y_t^1, Z_t^1) - A(\underline{y}_t^i - Y_t^1) - A \|\underline{z}_t^i - Z_t^1\| \ge g_1(t, Y_t^1, Z_t^1) - A(\underline{y}_t^i - Z_t^i)$ and $g(t, \underline{y}_t^i, \underline{z}_t^i) \ge g(t, Y_t^1, Z_t^1) - A(\underline{y}_t^i - Z_t^i)$ and $g(t, \underline{y}_t^i, \underline{z}_t^i) \ge g(t, Y_t^1, Z_t^1) - A(\underline{y}_t^i - Z_t^i)$ and $g(t, \underline{y}_t^i, \underline{z}_t^i) \ge g(t, Y_t^1, Z_t^i) - A(\underline{y}_t^i - Z_t^i)$ and $g(t, \underline{y}_t^i, \underline{z}_t^i) \in \mathcal{H}_1^2$, and Eq. (7) has a unique adapted solution. By the similar procedure, we have $\underline{y}_t^i \le \underline{y}_t^{i+1} \le Y_t^2$. The proof is complete. \Box

Now, we introduce our main result:

Theorem 5. Under Assumption H1–H3, and $\{\underline{y}_t^i, \underline{z}_t^i\}_{i=1}^{\infty}$ are the solutions of (6), then $\{\underline{y}_t^i, \underline{z}_t^i\}_{i=1}^{\infty}$ converges in $S^2 \times \mathcal{H}_d^2$ to (y_t, \underline{z}_t) , (y_t, \underline{z}_t) is a solution of Eq. (4).

Proof. The inequality in Lemma 4 leads to the fact that $\{\underline{y}_{t}^{i}\}_{i=1}^{\infty}$ converges to a limit \underline{y}_{t} in S^{2} , and we have $\sup_{i} E \sup_{0 \leq t \leq T} |\underline{y}_{t}^{i}|^{2} \leq E \sup_{0 \leq t \leq T} |Y_{t}^{1}|^{2} + E \sup_{0 \leq t \leq T} |Y_{t}^{2}|^{2} < \infty$. Applying the Itô formula to $|\underline{y}_{t}^{i+1}|^{2}$, we have $E[|\underline{y}_{t}^{i+1}|^{2}] = |\underline{y}_{0}^{i+1}|^{2} + E \int_{0}^{T} (||\underline{z}_{t}^{i+1}||^{2} - 2\underline{y}_{t}^{i+1}(g(t, \underline{y}_{t}^{i}, \underline{z}_{t}^{i}) - A(\underline{y}_{t}^{i+1} - \underline{y}_{t}^{i}) - A\|\underline{z}_{t}^{i+1} - \underline{z}_{t}^{i}\|) ds$. Then $|g(t, \underline{y}_{t}^{i}, \underline{z}_{t}^{i})| \leq |g_{2}(t, Y_{t}^{2}, Z_{t}^{2}) + A(Y_{t}^{2} - \underline{y}_{t}^{i}) + A\|Z_{t}^{2} - \underline{z}_{t}^{i}\|| + |g_{1}(t, Y_{t}^{1}, Z_{t}^{1}) - A(\underline{y}_{t}^{i} - Y_{t}^{1}) - A\|\underline{z}_{t}^{i} - Z_{t}^{1}\|| \leq \sum_{j=1}^{2}[|g_{j}(t, Y_{t}^{j}, Z_{t}^{j})| + A(|Y_{t}^{j}| + |Z_{t}^{j}|)] + 2A(|\underline{y}_{t}^{i}| + |\underline{z}_{t}^{i}|)$. So $E \int_{0}^{T} ||\underline{z}_{t}^{i+1}||^{2} dt = 2E \int_{0}^{T} (\underline{y}_{t}^{i+1}[g(t, \underline{y}_{t}^{i}, \underline{z}_{t}^{i}) - A(\underline{y}_{t}^{i+1} - \underline{y}_{t}^{i})] - A(\underline{y}_{t}^{i+1} - \underline{y}_{t}^{i}) - A(\underline{y}_{t}^{i+1} - \underline{y}_{t}^{i}) - A\|\underline{z}_{t}^{i+1} - \underline{z}_{t}^{i}\|]$ dt $+ E|\xi|^{2} - |\underline{y}_{0}^{i+1}|^{2} \leq C + \frac{1}{8}E \int_{0}^{T} (|\underline{z}_{t}^{i+1}|^{2} + |\underline{z}_{t}^{i}|^{2}) dt$. That is $E \int_{0}^{T} \|\overline{z}_{t}^{i+1}\|^{2} dt \leq \overline{C} + \frac{1}{7}E \int_{0}^{T} \|\overline{z}_{t}^{i+1}\|^{2} dt$ where $\overline{C} = \frac{8}{7}(C + E|\xi|^{2})$, and $C = 2\sup_{i} \{E \int_{0}^{T} (2A|\overline{y}_{t}^{i+1}||\overline{y}_{t}^{i}| + |g(s, 0, 0)||\overline{y}_{t}^{i+1}| + (32A^{2} + 2A)|\overline{y}_{t}^{i+1}|^{2}) dt\}$. This implies that $\sup_{i} E \int_{0}^{T} \|\underline{z}_{t}^{i}\|^{2} dt < \infty$, which yields that the quantities $\psi_{t}^{i+1} = g(t, \underline{y}_{t}^{i}, \underline{z}_{t}^{i}) - A(\underline{y}_{t}^{i+1} - \underline{y}_{t}^{i}) - A\|\underline{z}_{t}^{i+1} - \underline{z}_{t}^{i}\|$ are uniformly bounded in \mathcal{H}_{1}^{2} . Set $C_{0} = \sup_{i} E \int_{0}^{T} |\psi_{t}^{i}|^{2} dt$. Now apply Itô's formula to $|\underline{y}_{t}^{p} - \underline{y}_{t}^{q}|^{2}, E|\underline{y}_{t}^{p} - \underline{y}_{t}^{q}|^{2} + \frac{1}{2}$ is a Cauchy sequence in \mathcal{H}_{d}^{2} , therefore $\{\underline{z}_{t}^{i}\}_{i=1}^{\infty}$ converges in \mathcal{H}_{d}^{2} , we de

Remark 6. By Theorem 5, we know that Eq. (3) in Remark 2 has at least one solution when $\xi = 1$ and $T = \frac{1}{2}$, because $g = \operatorname{sgn}(y)y^2 + \sin(|z|)$ satisfies H1–H3, where $g_2 = y^2 + 1$, $g_1 = -y^2 - 1$, and $g_1 \leq g \leq g_2$, moreover, the solutions of $(g_i, \frac{1}{2}, 1), i = 1, 2$, are $(\tan(\frac{\pi}{4} - \frac{1}{2} + t), 0)$ and $(\tan(\frac{\pi}{4} + \frac{1}{2} - t), 0)$, respectively, and $\tan(\frac{\pi}{4} + \frac{1}{2} - t) \geq \tan(\frac{\pi}{4} - \frac{1}{2} + t)$ when $t \in [0, \frac{1}{2}]$. But, we cannot assert that (g, T, ξ) have solution for the case $T \neq \frac{1}{2}$ or $\xi \neq 1$ since, in these cases, (g_i, T, ξ) may have no solution, or blow-up solution. But the solutions may be non-unique, for example, consider the BSDE $(\mathbf{1}(y)\sqrt{|y|}, 1, 0)$, where $\mathbf{1}(y) = 0$ when $y \leq 0$, otherwise $\mathbf{1}(y) = 1$. Clearly, $(\mathbf{1}(y)\sqrt{|y|}, 1, 0)$ satisfies H1–H3 where $g_1 = -\frac{1}{2} - \frac{|y|}{2}$ and $g_2 = \frac{1}{2} + \frac{|y|}{2}$, moreover, $(y_t, z_t) = (0, 0)$ and for any $c \in [0, T]$, $(y_t, z_t) = ([\max\{\frac{c-t}{2}, 0\}]^2, 0)$ are both the solutions of $(\mathbf{1}(y)\sqrt{|y|}, 1, 0)$.

Acknowledgements

The author thanks Professor S. Peng and Dr. M. Xu for their help and comments. We also thank the referee for a careful reading of the paper and his suggestions.

References

- [1] El Karoui, Peng S., Quenez M.C., Backward stochastic differential equations in finance, Math. Finance 7 (1) (1997) 1–71.
- [2] M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 (2000) 259–276.
- [3] J.P. Lepeltier, J.S. Martin, Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett. 34 (1997) 425-430.
- [4] E. Pardoux, Backward stochastic differential equations and viscosity solutions, in: Stochastic Analysis and Related Topics, vol. VI, Birkhäuser, 1996, pp. 79–128.
- [5] E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990) 55-61.
- [6] S. Peng, Nonlinear expectations, nonlinear evaluations and risk measures, in: M. Frittelli, W. Runggaldier (Eds.), Stochastic Methods in Finance, in: Lecture Notes in Math., vol. 1856, Springer-Verlag, Berlin, 2004, pp. 165–253.