

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 575-578

http://france.elsevier.com/direct/CRASS1/

Functional Analysis

The Banach algebra generated by a C_0 -semigroup

Heybetkulu Mustafayev

Yuzuncu Yil University, Faculty of Arts and Sciences, Department of Mathematics, 65080 Van, Turkey

Received 10 November 2005; accepted after revision 7 February 2006

Available online 9 March 2006

Presented by Gilles Pisier

Abstract

Let $\mathbf{T} = \{T(t)\}_{t \ge 0}$ be a bounded C_0 -semigroup on a Banach space with generator A. We define $A_{\mathbf{T}}$ as the closure with respect to the operator-norm topology of the set $\{\hat{f}(\mathbf{T}): f \in L^1(\mathbb{R}_+)\}$, where $\hat{f}(\mathbf{T}) = \int_0^\infty f(t)T(t) dt$ is the Laplace transform of $f \in L^1(\mathbb{R}_+)$ with respect to the semigroup \mathbf{T} . Then $A_{\mathbf{T}}$ is a commutative Banach algebra. It is shown that if the unitary spectrum $\sigma(A) \cap \mathbb{iR}$ of A is at most countable, then the Gelfand transform of $S \in A_{\mathbf{T}}$ vanishes on $\sigma(A) \cap \mathbb{iR}$ if and only if, $\lim_{t \to \infty} ||T(t)S|| = 0$. Some applications to the semisimplicity problem are given. *To cite this article: H. Mustafayev, C. R. Acad. Sci. Paris, Ser. I* 342 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L'algebre de Banach engendrée par un C_0 -semigroupe. Soit $\mathbf{T} = \{T(t)\}_{t \ge 0}$ un C_0 -semigroupe borné dans un espace de Banach par générateur A. Nous définissons $A_{\mathbf{T}}$ comme la clotûre par rapport à la topologie de la norme opérateur de l'ensemble $\{\hat{f}(\mathbf{T}): f \in L^1(\mathbb{R}_+)\}$, où $\hat{f}(\mathbf{T}) = \int_0^\infty f(t)T(t) dt$ est la transformée de Laplace de $f \in L^1(\mathbb{R}_+)$ par rapport au semigroupe \mathbf{T} . Alors $A_{\mathbf{T}}$ est une algèbre de Banach commutative. Dans cet article il est montré que, si la spectre unitaire $\sigma(A) \cap i\mathbb{R}$ de A est au plus dénombrable, alors la transformée de Gelfand de $S \in A_{\mathbf{T}}$ s'annule sur $\sigma(A) \cap i\mathbb{R}$ si et seulement si $\lim_{t\to\infty} ||T(t)S|| = 0$. Nous donnons aussi quelques applications de la semisimplicité du problème. *Pour citer cet article : H. Mustafayev, C. R. Acad. Sci. Paris, Ser. I 342 (2006).*

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and preliminaries

Let *X* be complex Banach space and *B*(*X*) the algebra of all bounded, linear operators on *X*. A family $\mathbf{T} = \{T(t)\}_{t \ge 0}$ in *B*(*X*) is called a *C*₀-*semigroup*, if the following properties are satisfied: (1) *T*(0) = *I*, the identity operator on *X*; (2) *T*(*t* + *s*) = *T*(*t*)*T*(*s*), for every *t*, *s* \ge 0; (3) $\lim_{t\to 0^+} ||T(t)x - x|| = 0$, for all $x \in X$.

The generator of the C₀-semigroup $\mathbf{T} = \{T(t)\}_{t \ge 0}$ is the linear operator A with domain D(A) defined by

$$Ax = \lim_{t \to 0^+} \frac{1}{t} (T(t)x - x), \quad x \in D(A).$$

1631-073X/\$ – see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2006.02.017

E-mail address: hsmustafayev@yahoo.com (H. Mustafayev).

The generator is always a closed, densely defined operator. The C_0 -groups are defined analogously to C_0 -semigroups. A C_0 -semigroup $\mathbf{T} = \{T(t)\}_{t \ge 0}$ will be said to be bounded if $\sup_{t \ge 0} ||T(t)|| < \infty$.

Let $\mathbf{T} = \{T(t)\}_{t \ge 0}$ be a bounded C_0 -semigroup with generator A. Then the spectrum $\sigma(A)$ of A belongs to the closed left half-plane. $\sigma(A) \cap i\mathbb{R}$ is called the *unitary spectrum* of A.

The Fourier transform $\hat{f}(z)$ of $f \in L^1(\mathbb{R}_+)$, where $\hat{f}(z) = \int_0^\infty \exp(-itz) f(t) dt$ is a function analytic in the open half-plane $\{z \in \mathbb{C}, \text{ Im } z < 0\}$ and is a bounded continuous function in the closed half-plane $\{z \in \mathbb{C}, \text{ Im } z \leq 0\}$. For a function $f \in L^1(\mathbb{R}_+)$, we put

$$\hat{f}(\mathbf{T}) = \int_{0}^{\infty} f(t)T(t) \,\mathrm{d}t$$

The map $f \to \hat{f}(\mathbf{T})$ is a continuous homomorphism from $L^1(\mathbb{R}_+)$ into B(X). We define $A_{\mathbf{T}}$ as the closure with respect to the operator-norm topology of the set $\{\hat{f}(\mathbf{T}): f \in L^1(\mathbb{R}_+)\}$. Then $A_{\mathbf{T}}$ is a commutative Banach algebra. The maximal ideal space of $A_{\mathbf{T}}$ will be denoted by $M_{\mathbf{T}}$. If $S \in A_{\mathbf{T}}$, its Gelfand transform will be denoted as \hat{S} . It can be easily verified that the map $z \to \phi_z$, homeomorphically identifies $\sigma(A)$ with a closed subset of $M_{\mathbf{T}}$, where $\phi_z : A_{\mathbf{T}} \to \mathbb{C}$ is defined by $\phi_z(\hat{f}(\mathbf{T})) = \hat{f}(iz)$. Therefore, instead of $\hat{S}(\phi_z) (= \phi_z(S)), z \in \sigma(A)$, we can (and will) write $\hat{S}(z)$.

Note that if $(h_n)_{n \in \mathbb{N}}$ is a bounded approximate identity (b.a.i.) for $L^1(\mathbb{R}_+)$, then $(\hat{h}_n(\mathbf{T}))_{n \in \mathbb{N}}$ is a b.a.i. for $A_{\mathbf{T}}$. Let $B_{\mathbf{T}}(X)$ be the closed subspace of B(X) consisting of all $Q \in B(X)$ such that $\lim_{t \to 0^+} ||T(t)Q - Q|| = 0$. It is easily checked that $B_{\mathbf{T}}(X)$ contains $A_{\mathbf{T}}$. For $T \in B(X)$, we denote by \widetilde{T} the left multiplication operator on B(X). Then $\widetilde{\mathbf{T}} = \{\widetilde{T}(t)\}_{t \ge 0}$ is a C_0 -semigroup on $B_{\mathbf{T}}(X)$. Let \widetilde{A} denote its generator. As is known [5, Lemma 5.2.2], $\sigma(\widetilde{A}) \subset \sigma(A)$.

2. The main result

Recall [5, p. 163] that the function $f \in L^1(\mathbb{R}_+)$ is said to be of *spectral synthesis* with respect to a closed subset K of \mathbb{R} if it can be approximated (in L^1 -norm) by functions $g_n \in L^1(\mathbb{R})$ such that $\hat{g}_n = 0$ on a neighborhood of K. Semigroup version of the Katznelson–Tzafriri Theorem (see, [3,6] and [5, Theorem 5.2.3]) asserts that if $f \in L^1(\mathbb{R}_+)$ which is of spectral synthesis with respect to $i\sigma(A) \cap \mathbb{R}$ (in particular, if $\sigma(A) \cap i\mathbb{R}$ is at most countable and $\hat{f}(z)$ vanishes on $\sigma(A) \cap i\mathbb{R}$), then $\lim_{t\to\infty} ||T(t)\hat{f}(\mathbf{T})|| = 0$.

The main result of this Note is the following theorem:

Theorem 2.1. Let $\mathbf{T} = \{T(t)\}_{t \ge 0}$ be a C_0 -semigroup of contractions on a Banach space X with generator A. If the unitary spectrum $\sigma(A) \cap \mathbb{R}$ of A is at most countable, then the Gelfand transform of $S \in A_{\mathbf{T}}$ vanishes on $\sigma(A) \cap \mathbb{R}$ if and only if $\lim_{t \to \infty} ||T(t)S|| = 0$.

For the proof we need some preliminary results.

Recall that the w^* -spectrum $\sigma_*(\varphi)$ of $\varphi \in L^{\infty}(\mathbb{R})$ is defined as the hull of the closed ideal $I_{\varphi} = \{f \in L^1(\mathbb{R}): \varphi * f = 0\}$. Let $AP(\mathbb{R})$ be the space of all almost periodic functions on \mathbb{R} and let Φ be the invariant mean on $AP(\mathbb{R})$. For $\lambda \in \mathbb{R}$, let $C_{\lambda}(\varphi)$ denote the Fourier–Bohr coefficient of a function $\varphi \in AP(\mathbb{R})$; $C_{\lambda}(\varphi) = \Phi[\exp(-i\lambda t)\varphi(t)]$. The *Bohr spectrum* $\sigma_B(\varphi)$ of $\varphi \in AP(\mathbb{R})$ is defined as the set of all $\lambda \in \mathbb{R}$ such that $C_{\lambda}(\varphi) \neq 0$. As is well known if $\varphi \in AP(\mathbb{R})$ then $\sigma_B(\varphi) \subseteq \sigma_*(\varphi)$ and moreover, $\sigma_*(\varphi) = \overline{\sigma_B(\varphi)}$. We also note that if $\varphi \in AP(\mathbb{R})$ and $f \in L^1(\mathbb{R})$, then $\varphi * f \in AP(\mathbb{R})$ and $C_{\lambda}(\varphi * f) = \hat{f}(\lambda)C_{\lambda}(\varphi)$. It follows that $\sigma_B(\varphi * f) = \{\lambda \in \sigma_B(\varphi): \hat{f}(\lambda) \neq 0\}$. Well known Loomis Theorem [4] states that, bounded uniformly continuous function with countable w^* -spectrum is almost periodic.

The following result is contained in [5] (Theorem 5.1.2 and Corollary 5.1.3):

Lemma 2.2. Let $\mathbf{T} = \{T(t)\}_{t \ge 0}$ be a C_0 -semigroup of contractions on a Banach space X, with generator A such that $\sigma(A) \cap i\mathbb{R} \neq i\mathbb{R}$. If $\inf_{t\ge 0} ||T(t)x|| > 0$ for some $x \in X \setminus \{0\}$, then there exist a Banach space $Y \neq \{0\}$, a bounded linear operator $J : X \to Y$, with dense range and a C_0 -group of isometries $\mathbf{U} = \{U(t)\}_{t\in\mathbb{R}}$ on Y with generator B such that: (i) $||Jx|| = \lim_{t\to\infty} ||T(t)x||$ for all $x \in X$; (ii) U(t)J = JT(t) for all $t \ge 0$; (iii) $\sigma(B) \subset \sigma(A) \cap i\mathbb{R}$.

Another result we need for the proof of the theorem is the following lemma:

Lemma 2.3. Let $\mathbf{U} = \{U(t)\}_{t \in \mathbb{R}}$ be a C_0 -group of isometries on a Banach space Y with generator B such that $\sigma(B)$ is at most countable. Then for every nonzero $\phi \in Y^*$, there exist a Hilbert space $H_{\phi} \neq \{0\}$, a bounded linear operator $J_{\phi} : Y \to H_{\phi}$ with dense range and a C_0 -group of unitary operators $\mathbf{U}_{\phi} = \{U_{\phi}(t)\}_{t \in \mathbb{R}}$ on H_{ϕ} with generator B_{ϕ} such that: (i) $\bigcap_{\phi \in Y^*} \ker J_{\phi} = \{0\}$; (ii) $U_{\phi}(t)J_{\phi} = J_{\phi}U(t)$ for all $t \in \mathbb{R}$; (iii) $\sigma(B_{\phi}) \subset \sigma(B)$.

Proof. Let $\phi \in Y^* \setminus \{0\}$ be given. For any $y \in Y$, we define the function $\bar{y}_{\phi}(t)$ on \mathbb{R} by $\bar{y}_{\phi}(t) = \phi((U(-t))y)$. Then $\bar{y}_{\phi}(t)$ is a bounded continuous function and $\|\bar{y}_{\phi}\|_{\infty} \leq \|\phi\| \|y\|$. We claim that $\bar{y}_{\phi}(t) \in AP(\mathbb{R})$. Since the set $\{\hat{f}(\mathbf{U})y: y \in Y, f \in L^1(\mathbb{R})\}$ is dense in Y, we may assume that y is of the form $\hat{f}(\mathbf{U})z$, for some $f \in L^1(\mathbb{R})$ and $z \in Y$. Also, since

$$\bar{y}_{\phi}(t) = \phi \left(U(-t)\hat{f}(\mathbf{U})z \right) = \int_{\mathbb{R}} \phi \left(U(s-t)z \right) f(s) \, \mathrm{d}s = \int_{\mathbb{R}} \bar{z}_{\phi}(t-s)f(s) \, \mathrm{d}s = (\bar{z}_{\phi} * f)(t),$$

 $\bar{y}_{\phi}(t)$ is a uniformly continuous function. Now, let us show that $\sigma_*(\bar{y}_{\phi}) \subset \sigma(iB)$. Assume that there is a $\lambda_0 \in \sigma_*(\bar{y}_{\phi})$, but $\lambda_0 \notin \sigma(iB)$. Then there exists a $f \in L^1(\mathbb{R})$ such that $\hat{f}(\lambda_0) \neq 0$ and $\hat{f}(\lambda) = 0$ in a neighborhood of $\sigma(iB)$. Hence, f belongs to the smallest closed ideal in $L^1(\mathbb{R})$ whose hull is $\sigma(iB)$. Using the fact (see, [1, p. 223] and [2]) that

$$\operatorname{hull}\left\{f \in L^{1}(\mathbb{R}): \ \widehat{f}(\mathbf{U}) = 0\right\} = \sigma(\mathbf{i}B),$$

we have $\hat{f}(\mathbf{U}) = 0$, so that $\bar{y}_{\phi} * f = 0$. Since $\lambda_0 \in \sigma_*(\bar{y}_{\phi})$, it follows that $\hat{f}(\lambda_0) = 0$. This contradicts $\hat{f}(\lambda_0) \neq 0$. Hence, $\sigma_*(\bar{y}_{\phi})$ is at most countable. By the Loomis Theorem [4], $\bar{y}_{\phi}(t) \in AP(\mathbb{R})$. This proves the claim.

Let H^0_{ϕ} denote the linear set $\{\bar{y}_{\phi}(t): y \in Y\}$ with the inner product defined by

$$\langle \bar{y}_{\phi}, \bar{z}_{\phi} \rangle = \Phi \left[\bar{y}_{\phi}(t) \overline{\bar{z}_{\phi}(t)} \right] \quad (y, z \in Y),$$

and let H_{ϕ} be the completion of H_{ϕ}^{0} with respect to this inner product. Since $\|\bar{y}_{\phi}\| \leq \|\bar{y}_{\phi}\|_{\infty} \leq \|\phi\| \|y\|$, the map $J_{\phi}: Y \to H_{\phi}$, defined by $J_{\phi}y = \bar{y}_{\phi}$ is a bounded linear operator with dense range. It is easy to see that $\bigcap_{\phi \in Y^{*}} \ker J_{\phi} = \{0\}$. Now let $\mathbf{U}_{\phi} = \{U_{\phi}(t)\}_{t \in \mathbb{R}}$ be the translation group on H_{ϕ} ; $U_{\phi}(t)\bar{y}_{\phi}(s) = \bar{y}_{\phi}(t-s)$. Then $\mathbf{U}_{\phi} = \{U_{\phi}(t)\}_{t \in \mathbb{R}}$ is a C_{0} -group of unitary operators on H_{ϕ} and $U_{\phi}(t)J_{\phi} = J_{\phi}U(t)$ for all $t \in \mathbb{R}$. We have proved (i) and (ii).

Next we prove (iii). Let B_{ϕ} be the generator of \mathbf{U}_{ϕ} . Let $f \in L^{1}(\mathbb{R})$ and $y \in Y$ be given. Since $\hat{f}(\mathbf{U}_{\phi})J_{\phi}y = J_{\phi}\hat{f}(\mathbf{U})y = \bar{y}_{\phi} * f$ and $C_{\lambda}(\bar{y}_{\phi} * f) = \hat{f}(\lambda)C_{\lambda}(\bar{y}_{\phi})$, it follows from the Parseval's identity that

$$\begin{aligned} \left\| \hat{f}(\mathbf{U}_{\phi}) J_{\phi} y \right\| &= \left(\sum_{\lambda \in \sigma_{B}(\bar{y}_{\phi} * f)} \left| \hat{f}(\lambda) \right|^{2} \left| C_{\lambda}(\bar{y}_{\phi}) \right|^{2} \right)^{1/2} \leqslant \sup_{\lambda \in \sigma_{B}(\bar{y}_{\phi})} \left| \hat{f}(\lambda) \right| \left\| \bar{y}_{\phi} \right\| \leqslant \sup_{\lambda \in \sigma(\mathbf{i}B)} \left| \hat{f}(\lambda) \right| \left\| \bar{y}_{\phi} \right\| \\ &\leqslant \left\| \hat{f}(\mathbf{U}) \right\| \left\| J_{\phi} y \right\|. \end{aligned}$$

Also since J_{ϕ} has dense range, we obtain $\|\hat{f}(\mathbf{U}_{\phi})\| \leq \|\hat{f}(\mathbf{U})\|$. It follows that the map $\hat{f}(\mathbf{U}) \rightarrow \hat{f}(\mathbf{U}_{\phi})$ can be extended continuously to a norm decreasing homomorphism $h: A_{\mathbf{U}} \rightarrow A_{\mathbf{U}_{\phi}}$. It can be seen that $h^*M_{\mathbf{U}_{\phi}} \subset M_{\mathbf{U}}$. Now, using the fact (see, [1, p. 223] and [2]) that $M_{\mathbf{U}_{\phi}} = \sigma(\mathbf{i}B_{\phi})$ and $M_{\mathbf{U}} = \sigma(\mathbf{i}B)$, we obtain $\sigma(B_{\phi}) \subset \sigma(B)$. \Box

Proof of Theorem 2.1. Assume that for some $S \in A_{\mathbf{T}}$, $\lim_{t\to\infty} ||T(t)S|| \to 0$. Let $t \in \mathbb{R}$, $iy \in \sigma(A)$ $(y \in \mathbb{R})$, $f \in L^1(\mathbb{R}_+)$ and let

$$f_t(s) = \begin{cases} f(s-t), & s \ge t, \\ 0, & 0 \le s < t. \end{cases}$$

Then we can write

$$\phi_{iy}(T(t)\hat{f}(\mathbf{T})) = \phi_{iy}(\hat{f}_t(\mathbf{T})) = \hat{f}_t(-y) = \exp(iyt)\hat{f}(-y) = \exp(iyt)\phi_{iy}(\hat{f}(\mathbf{T})).$$

Since $\{\hat{f}(\mathbf{T}): f \in L^1(\mathbb{R}_+)\}$ is dense in $A_{\mathbf{T}}$, we have $\phi_{iy}(T(t)S) = \exp(iyt)\widehat{S}(iy)$. It follows that

$$\left|\widehat{S}(\mathrm{i}y)\right| = \left|\phi_{\mathrm{i}y}(T(t)S)\right| \leq ||T(t)S|| \to 0, \quad t \to \infty.$$

Now let $S \in A_T$ be such that $\widehat{S}(z) \equiv 0$ on $\sigma(A) \cap i\mathbb{R}$. First we prove that $\lim_{t \to \infty} ||T(t)Sx|| = 0$ for all $x \in X$. If $\lim_{t \to \infty} ||T(t)x|| = 0$ for all $x \in X$, then there is nothing to prove. Hence, we may assume that $\inf_{t \ge 0} ||T(t)x|| > 0$ for

some $x \in X \setminus \{0\}$. By Lemma 2.2 there exist a Banach space $Y \neq \{0\}$, a bounded linear operator $J : X \to Y$ with dense range and a C_0 -group of isometries $\mathbf{U} = \{U(t)\}_{t \in \mathbb{R}}$ on Y with generator B such that: (i) $||Jx|| = \lim_{t \to \infty} ||T(t)x||$ for all $x \in X$; (ii) U(t)J = JT(t) for all $t \ge 0$; (iii) $\sigma(B) \subset \sigma(A) \cap i\mathbb{R}$.

Let $\phi \in Y^* \setminus \{0\}$ be given. By Lemma 2.3 there exist a Hilbert space $H_{\phi} \neq \{0\}$, a bounded linear operator $J_{\phi}: Y \to H_{\phi}$, with dense range and a C_0 -group of unitary operators $\mathbf{U}_{\phi} = \{U_{\phi}(t)\}_{t \in \mathbb{R}}$ on H_{ϕ} with generator B_{ϕ} such that: (iv) $\bigcap_{\phi \in Y^*} \ker J_{\phi} = \{0\}$; (v) $U_{\phi}(t)J_{\phi} = J_{\phi}U(t)$ for all $t \in \mathbb{R}$; (vi) $\sigma(B_{\phi}) \subset \sigma(B)$.

Since $S \in A_{\mathbf{T}}$, there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in $L^1(\mathbb{R}_+)$ such that $\|\hat{f}_n(\mathbf{T}) - S\| \to 0$. It follows that $\phi_z(\hat{f}_n(\mathbf{T})) = \hat{f}_n(iz) \to 0$ -uniformly for $z \in \sigma(A) \cap i\mathbb{R}$. From (iii) and (vi) we have $\sigma(B_{\phi}) \subset \sigma(A) \cap i\mathbb{R}$, so that $\hat{f}_n(iz) \to 0$ -uniformly for $z \in \sigma(B_{\phi})$. Since for every $f \in L^1(\mathbb{R}_+)$,

$$\left\|\hat{f}(\mathbf{U}_{\phi})\right\| = \sup_{z \in \sigma(B_{\phi})} \left|\hat{f}(\mathbf{i}z)\right|,$$

it follows that $\|\hat{f}_n(\mathbf{U}_{\phi})\| \to 0$. Further, from (ii) and (v) we can write $U_{\phi}(t)J_{\phi}J = J_{\phi}JT(t)$ $(t \ge 0)$, which implies that $\hat{f}_n(\mathbf{U}_{\phi})J_{\phi}J = J_{\phi}J\hat{f}_n(\mathbf{T})$. By taking the limit as $n \to \infty$, we obtain $J_{\phi}JS = 0$ for all $\phi \in Y^*$. It follows from (iv) that JS = 0. By (i) this means that $\lim_{t\to\infty} \|T(t)Sx\| = 0$ for every $x \in X$.

Next, let $\widetilde{\mathbf{T}} = {\widetilde{T}(t)}_{t \ge 0}$ be a C_0 -semigroup on $B_{\mathbf{T}}(X)$ with generator \widetilde{A} . Note that $\widetilde{S} \in A_{\widetilde{\mathbf{T}}}$. Since $\sigma(\widetilde{A}) \subset \sigma(A)$, the set $\sigma(\widetilde{A}) \cap \mathbb{R}$ is at most countable. On the other hand, $\widehat{S}(z) = \widehat{S}(z) = 0$ for all $z \in \sigma(\widetilde{A}) \cap \mathbb{R}$. Now, it follows from what is proved above that $\lim_{t\to\infty} \|\widetilde{T}(t)\widetilde{S}Q\| = 0$ for all $Q \in B_{\mathbf{T}}(X)$. In particular, we have $\lim_{t\to\infty} \|T(t)SQ\| = 0$ for all $Q \in A_{\mathbf{T}}$. Let $(Q_n)_{n\in\mathbb{N}}$ be a b.a.i. for $A_{\mathbf{T}}$. Then for any $\varepsilon > 0$ and for some $n \in \mathbb{N}$, we have $\|SQ_n - S\| < \varepsilon$. This implies $\|T(t)S\| < \|T(t)SQ_n\| + \varepsilon$ for all $t \ge 0$. As $t \to \infty$, we obtain that $\lim_{t\to\infty} \|T(t)S\| < \varepsilon$. \Box

3. Semisimplicity

Let A be a complex commutative Banach algebra. If the Gelfand transform on A is injective, then A is said to be *semisimple*. If A is a closed commutative subalgebra of B(X), then A is semisimple if and only if it does not contain a nonzero quasi-nilpotent operator.

The following example shows that there exists a uniformly bounded C_0 -semigroup with one-point unitary spectrum that generates a non-semisimple algebra.

Example 3.1. Let *V* be the Volterra operator on the Hilbert space $L^2[0, 1]$, defined by $(Vf)(t) = \int_0^t f(s) ds$ and let $\mathbf{T} = \{e^{-tV}\}_{t \ge 0}$. Notice that the exponential formula, yields $||e^{-tV}|| = 1$ for all $t \ge 0$. On the other hand, *V* is a nonzero quasi-nilpotent operator and $V \in A_{\mathbf{T}}$. Hence, $A_{\mathbf{T}}$ is not semisimple.

As an immediate corollary of the Theorem 2.1 we have the next result.

Corollary 3.2. Let $\mathbf{T} = \{T(t)\}_{t \ge 0}$ be a bounded C_0 -semigroup on a Banach space X with generator A such that the unitary spectrum $\sigma(A) \cap \mathbb{R}$ of A is at most countable and $\inf_{t \ge 0} ||T(t)x|| > 0$ for all $x \in X \setminus \{0\}$. If the Gelfand transform of $S \in A_{\mathbf{T}}$ vanishes on $\sigma(A) \cap \mathbb{R}$, then S = 0. In particular, $A_{\mathbf{T}}$ is semisimple.

References

- [1] W. Arveson, The harmonic analysis of automorphism groups of operator algebras, Proc. Sympos. Pure Math. 38 (1982) 199-269.
- [2] D.E. Evans, On the spectrum of a one-parameter strongly continuous representation, Math. Scand. 39 (1976) 80–82.
- [3] Y. Katznelson, L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986) 313–328.
- [4] L.H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math. 72 (1960) 362–368.
- [5] J.M.A.M. van Neerven, The Asymptotic Behavior of Semigroups of Linear Operators, Birkhäuser, 1996.
- [6] V.Q. Phong, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992) 74-84.