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Abstract

We consider the Liouville equation associated to a metric g and we prove dispersion and Strichartz estimates for the solution of
this equation in terms of the geometry of the trajectories associated to g. In particular, we obtain global Strichartz estimates in time
for metrics where dispersion estimate is false even locally in time. We also study the analogy between Strichartz estimates obtained
for the Liouville equation and the Schrödinger equation with variable coefficients. To cite this article: D. Salort, C. R. Acad. Sci.
Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dispersion et estimations de Strichartz pour l’équation de Liouville. On considère l’équation de Liouville associée à une
métrique g et on prouve des estimations de dispersion et de Strichartz pour la solution de cette équation en fonction de la géométrie
des trajectoires associée à g. En particulier, on obtient des estimations de Strichartz globales en temps pour des métriques où l’esti-
mation de dispersion est fausse même pour des temps arbitrairement petits. Cette étude permet de mettre en évidence une analogie
entre le comportement de la solution de l’équation de Schrödinger et de l’équation de Liouville. Pour citer cet article : D. Salort,
C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The aim of this Note is on the one hand to understand the link between the geometry of the trajectories and
dispersion phenomena and on the other hand to establish Strichartz estimates in a very general setting (see [6] for
more details). We consider here the d-dimensional case with d � 2, (see [7] for the one dimensional case) and a C2

metric g : Rd → Md(R) satisfying the following condition

∃m > 0, ∃M > 0, m Id � g � M Id .

We denote gij = (g−1)ij and we consider the Liouville equation associated to a metric g given by{
∂tf + {H,f } = 0,

f (0, x, ξ) = f in(x, ξ),
(1)
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where {H,f } denotes the Poisson bracket between f and the Hamiltonian H(x, ξ) := 1
2

∑d
i,j=1 gij (x)ξiξj . The

solution f (t, x, ξ) of this equation models the evolution of a microscopic density of particles which at time t , is
at position x, and velocity ξ .

Definition 1.1. Let (q,p, r, a) ∈ [1,+∞]4. We say that the quadruplet (q,p, r, a) is admissible if it satisfies the
following relations

2

q
= d

(
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r
− 1

p

)
,

1

a
= 1

2

(
1

r
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p

)
and q > 2 � a.

In the case where g = Id, F. Castella and B. Perthame have shown in [4] that the solution of the Liouville equation
satisfies

‖f ‖L
q
t (L

p
x (Lr

ξ )) � C(q,p, r, a)
∥∥f in

∥∥
La

x,ξ

for all admissible quadruplets (q,p, r, a).

2. Estimations without geometrical assumptions

In this section, we consider the case of general bounded positive metrics without geometric assumptions and we
obtain the following theorem

Theorem 2.1. Let I be a finite time interval, (q,p, r, a) an admissible quadruplet and ε > 0. Then there exists a
constant C such that, the solution f of Eq. (1), satisfies

‖f ‖L
q
I (L

p
x (Lr

ξ )) � C
∥∥(

1 + |ξ |1/q+ε
)
f in

∥∥
La

x,ξ
.

Moreover, the loss of 1
q

momentum is optimal for the Liouville equation on M × T M for all Riemannian compact
manifold M .

The idea of the proof is to establish a dispersion estimate both local in time and frequency and to make a
time-frequency split-up of the solution. This split-up method has been used for wave equations by H. Bahouri and
J.-Y. Chemin [1] and in the case of Schrödinger equation by N. Burq, P. Gérard, N. Tzvetkov [3] and by the au-
thor [8]. To prove that the loss of 1

q
momentum is optimal, we consider the sequence of initial data f in

n (x, ξ) =
IM(x)I2n�|ξ |�2n+1(ξ) where n ∈ N and we use the fact that d

r
= d

a
+ 1

q
.

3. Dispersive metrics

In this section, we give a condition on the trajectories for the solution f of the Liouville equation (1) to satisfy the
same dispersion estimate as in the Euclidean case. To do this, we introduce the following definitions

Definition 3.1. Let x ∈ R
d , we denote S

d−1
x := {ξ ∈ R

d, ‖ξ‖x = (
∑

i,j gij (x)ξiξj )
1/2 = 1}. We denote by σx the

surface measure of S
d−1
x and σe the surface measure of the Euclidean sphere S

d−1. We say that a metric g is non-
focusing if

∃C, ∀(t, x, y) ∈ R
2d+1, ∀ε > 0, σx

{
e ∈ S

d−1
x , X(t, x, e) ∈ B(y, ε)

}
� C

(
ε

|t |
)d−1

(2)

i.e. if the trajectories do not concentrate at any point and scatter in all directions. We say that g is focusing if it does
not satisfy the condition (2).

Definition 3.2. Let g be a metric of R
d . We say that g is dispersive if g is non-focusing and further satisfies the

condition

∃C, ∀(x, y) ∈ R
d × R

d, ∀ε > 0, µ
{
t ∈ R, ∃e ∈ S

d−1
x , X(· , x, e) ∈ B(y, ε)

}
� Cε, (3)

where µ denotes the Lebesgue measure on the real line.
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We obtain the following theorems:

Theorem 3.3. Let g be a dispersive metric and let f be the solution of the Liouville equation (1). Then, we have the
following dispersion estimate

sup
x

(∫ ∣∣f (t, x, ξ)
∣∣dξ

)
� C|t |−d

∫
sup
ξ

(∣∣f in
∣∣(x, ξ)

)
dx.

Theorem 3.4. Let g be a focusing metric. Then there exists a sequence (f in
n )n∈N∗ of initial data, a sequence of reals

(tn)n∈N∗ , such that the sequence of solutions (fn)n∈N∗ of Eq. (1) with initial data (f in
n )n∈N∗ satisfies

sup
x

∫
ξ

∣∣fn(tn, x, ξ)
∣∣dξ � C

n

|tn|d
∫

sup
ξ

∣∣f in
n (x, ξ)

∣∣dx.

To prove Theorem 3.3, we first consider the particular case where f in(x, ξ) = IB(α1,r1)(x) with α1 ∈ R
d and

r1 ∈ R
+ and we then proceed in the general case by an approximation argument. To prove Theorem 3.4, we con-

sider initial data f in
n which concentrated in space around a point where the metric focalized.

4. Case of non-trapped and long range perturbation of the Euclidean metric

For the definition of non-trapped and long range perturbation of the Euclidean metric, we refer to the article of
N. Burq [2]. The following proposition shows that the set of dispersive metrics does not contain the set of non-trapped
metrics which coincide with the Euclidean metric outside a compact subset of R

2.

Proposition 4.1. Let ψ ∈ C∞(R) be a non-negative function such that

ψ ≡ 1 on ]−∞,R] and ψ ≡ 0 on [2R,+∞[,
where R is a constant large enough. Let S be the surface of R

3 given by

S =
{
(x, y, z) ∈ R

3, z = 1

2
r2ψ(r), where r =

√
x2 + y2

}
.

Let us denote by φ the diffeomorphism from R
2 to S given by φ(x, y) = (x, y, 1

2 r2ψ(r)). Let g : R2 → M2(R) be the
metric given by

gij (x) =
(

∂φ

∂xi

(x)

∣∣∣∣ ∂φ

∂xj

(x)

)
R3

.

Then, g is a non-trapped compactly supported perturbation of the Euclidean metric and non-focusing and so non-
dispersive.

The proof of this proposition is given by using the equations on geodesics and the fact that the paraboloid has two
conjugate points.

The following proposition shows an averaging effect for the solution of the Liouville equation (1) associated to a
non-trapped long range perturbation of the Euclidean metric. In the case of the Liouville equation associated to the
Euclidean metric, P.-L. Lions and B. Perthame [5] have shown other averaging lemma in a different setting.

Proposition 4.2. Let g be a non-trapped and long range perturbation of the Euclidean metric. Let R > 0, and let γ

be a function in D(B(0,R)). Then, there exists C > 0 such that the solution f of the Liouville equation (1) satisfies
for all a � 1,∥∥|ξ |1/aγ (x)f (t, x, ξ)

∥∥
La

t,x,ξ
� C

∥∥f in
∥∥

La
x,ξ

.
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This proposition and the study made in the case without geometric assumptions allow us to prove Theorems 4.3
and 4.4 via a split-up in time, space and frequency of the solution. This strategy of splitting-up the solution has been
used for the Schrödinger equation by N. Burq in [2].

We have the following theorems:

Theorem 4.3. Let g be a non-trapped metric and let R > 0 such that g coincides with the Euclidean metric on
cB(0,R). Then, there exists a constant C such that the solution f of the Liouville equation (1) satisfies

‖f ‖L
q
t (L

p
x (Lr

ξ )) � C

(∑
j∈Z

∥∥ϕ
(
2−j ξ

)
f in

∥∥r

La
x,ξ

)1/r

where
∑
j∈Z

ϕ
(
2−j ξ

) = 1 ∀ξ ∈ R
d \ {0}

for all admissible quadruplets (q,p, r, a).

This theorem gives a global Strichartz estimate in time. Nevertheless, the average effect giving poor control on low
frequencies, the norm in which the initial data is considered is very slightly weakened compared to the case of the
Euclidean metric. More generally, we have the following theorem

Theorem 4.4. Let g be a non-trapped metric which is a long range perturbation of the Euclidean metric. Let f be the
solution of the Liouville equation (1). Then, for all ε > 0, for all finite interval I , there exists a constant C such that
we have

‖f ‖L
q
I (L

p
x (Lr

ξ )) � C
∥∥(

1 + |ξ |)ε
f in

∥∥
La

x,ξ
,

where (q,p, r, a) is an admissible quadruplet.
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