C. R. Acad. Sci. Paris, Ser. I 342 (2006) 563-568

Partial Differential Equations

Neumann problem for a quasilinear elliptic equation in a varying domain

Mamadou Sango
Department of Mathematics and Applied Mathematics, University of Pretoria/Mamelodi Campus, Pretoria 0002, South Africa

Received 13 April 2005; accepted after revision 7 February 2006

Presented by Philippe G. Ciarlet

Abstract

We investigate the Neumann problem for a nonlinear elliptic operator of Leray-Lions type in $\Omega^{(s)}=\Omega \backslash F^{(s)}, s=1,2, \ldots$, where Ω is a domain in $\mathbf{R}^{n}(n \geqslant 3), F^{(s)}$ is a closed set located in the neighborhood of a $(n-1)$-dimensional manifold Γ lying inside Ω. We study the asymptotic behavior of $u^{(s)}$ as $s \rightarrow \infty$, when the set $F^{(s)}$ tends to Γ. To cite this article: M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006). © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Problème de Neumann pour une équation élliptique non lineaire dans un domaine perforé. Nous étudions le problème de Neumann pour un opérateur élliptique de type Leray-Lions dans un domaine $\Omega^{(s)}=\Omega \backslash F^{(s)}, s=1,2, \ldots$, où Ω est un ouvert dans $\mathbf{R}^{n}(n \geqslant 3), F^{(s)}$ est un ensemble fermé situé au voisinage d'une variété differentiable Γ de dimension ($n-1$) à l'intérieur de Ω. Nous étudions the comportement asymptotique de $u^{(s)}$ quand $F^{(s)}$ converge vers Γ dans un sens approprié. Pour citer cet article : M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit Ω est un ouvert dans $\mathbf{R}^{n}(n \geqslant 3), F^{(s)}, s=1,2, \ldots$, est un ensemble fermé situé au voisinage d'une variété Γ de dimension $(n-1)$ à l'intérieur de Ω qui divise Ω en deux domaines disjoints Ω^{+}et Ω^{-}. Dans le domaine perforé $\Omega^{(s)}=\Omega \backslash F^{(s)}$, nous étudions le problème aux limites

$$
\begin{aligned}
& A u^{(s)}=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}\left(x, \frac{\partial u^{(s)}}{\partial x}\right)\right)=f, \quad \operatorname{dans} \Omega^{(s)}, \\
& \frac{\partial u^{(s)}}{\partial v_{A}}=: \sum_{i=1}^{n} a_{i}\left(x, \frac{\partial u^{(s)}}{\partial x}\right) \cos \left(v, x_{i}\right)=0, \quad \operatorname{sur} \partial F^{(s)}, \\
& u^{(s)}=0 \quad \operatorname{sur} \partial \Omega
\end{aligned}
$$

[^0]où v est un vecteur normal à $\partial F^{(s)}, f$ et A sont une fonction et un opérateur assujettis à des conditions définies dans la suite. Nous démontrons sous des hyphotèses appropriées que lorsque $s \rightarrow \infty$, la suite $u^{(s)}$ de solutions du problème converge dans des topologies convenables vers une solution du problème de transmission
\[

$$
\begin{aligned}
& -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}\left(x, \frac{\partial u}{\partial x}\right)\right)=f, \quad \text { dans } \Omega \backslash \Gamma, \\
& \left(\frac{\partial u}{\partial v_{A}}\right)_{+}+\left(\frac{\partial u}{\partial v_{A}}\right)_{-}=p c(x)\left|u_{+}-u_{-}\right|^{p-2}\left(u_{+}-u_{-}\right) \quad \operatorname{sur} \Gamma, \\
& u=0 \quad \operatorname{sur} \partial \Omega .
\end{aligned}
$$
\]

Le paramètre p et la fonction c sont définis dans la suite.

1. Introduction

Let Ω be a bounded domain in $\mathbf{R}^{n}(n \geqslant 3)$ with a sufficiently smooth boundary $\partial \Omega$. Let $F^{(s)}$ be a closed set in Ω depending on the parameter s running throughout the set of natural numbers. The main assumption on the set $F^{(s)}$ is that as $s \rightarrow \infty, F^{(s)}$ is located in an arbitrary small neighborhood of some smooth manifold Γ without boundary which lies inside Ω and partition Ω into two subdomains Ω^{+}(the interior) and Ω^{-}(the exterior). In the domain $\Omega^{(s)}=\Omega \backslash F^{(s)}$ that we assume sufficiently smooth, we investigate the sequence of solutions $u^{(s)}$ of the boundary value problem

$$
\begin{align*}
& A u^{(s)}=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}\left(x, \frac{\partial u^{(s)}}{\partial x}\right)\right)=f, \quad \text { in } \Omega^{(s)}, \tag{1}\\
& \frac{\partial u^{(s)}}{\partial v_{A}}=: \sum_{i=1}^{n} a_{i}\left(x, \frac{\partial u^{(s)}}{\partial x}\right) \cos \left(v, x_{i}\right)=0, \quad \text { on } \partial F^{(s)}, \tag{2}\\
& u^{(s)}=0, \quad \text { on } \partial \Omega, \tag{3}
\end{align*}
$$

where v is a normal vector to $\partial F^{(s)}$, f is a function defined and compactly supported inside Ω (the support of f does not intersect $\Gamma), A: W_{p}^{1}\left(\mathbf{R}^{n}\right) \rightarrow W_{p^{\prime}}^{1}\left(\mathbf{R}^{n}\right)$ is a monotone operator satisfying appropriate conditions.

The aim of the present Note is to investigate the behavior of the sequence $u^{(s)}$ of solutions of the problem (1)-(3). Under more precise restrictions on the set $F^{(s)}$, we show that $u^{(s)}$ converges in suitable topologies to a solution of a limit problem that we derive explicitly.

The rise of interest in Neumann problems in complicated domains in the last two decades was generated by the work of Sanchez-Palencia [9] related to perforated plane structures; commonly known now as Neumann sieve. Related works can be found in $[2-4,7]$. The problem (1)-(3) was originally studied by Marchenko, Khruslov and their coworkers mainly in the linear case, i.e., when a_{i} is independent of u (see [5]). The present work is concerned with the nonlinear case. Unlike most of the papers mentioned in the previous paragraph, the perforated domain considered here has a rather general structure.

We shall use the following well-known Lebesgue and Sobolev spaces $L_{p}(\cdot), W_{p}^{1}(\cdot), \dot{W}_{p}^{1}(\cdot)(p \geqslant 1)$. We denote by $W_{p^{\prime}}^{-1}(\cdot)$ the dual of $\stackrel{\circ}{W}_{p}^{1}(\cdot)$ where p^{\prime} is the Hölder conjugate of p, i.e., $p^{-1}+p^{\prime-1}=1$. If ξ is a vector we denote its Euclidean norm by $|\xi|$. We denote by C all generic constants independent of s and depending only on the data.

We assume for simplicity that $2 \leqslant p<n-1$ and that Eq. (1) is the Euler-Lagrange equation for the functional

$$
I(v)=\int_{\Omega^{(s)}}\left[A_{i}\left(x, \frac{\partial v}{\partial x}\right) \frac{\partial v}{\partial x_{i}}-f v\right] \mathrm{d} x,
$$

where the functions $A_{i}(x, \xi), \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are Caratheodory and satisfy
A. for all $x \in \Omega \backslash \Omega, t \in \mathbf{R}$ and $\xi \in \mathbf{R}^{n}, A_{i}(x, t \xi)=|t|^{p-2} t A_{i}(x, \xi)$,
B. there exist two positive constants c_{1} and c_{2} such that for all $\xi, \eta \in \mathbf{R}^{n}$ with $\xi=\left(\xi_{i}\right), \eta=\left(\eta_{i}\right), i=1, \ldots, n$,

$$
\begin{align*}
& \sum_{i=1}^{n}\left(A_{i}(x, \xi)-A_{i}(x, \eta)\right)\left(\xi_{i}-\eta_{i}\right) \geqslant c_{1}|\xi-\eta|^{p} \tag{4}\\
& \left|A_{i}(x, \xi)-A_{i}(x, \eta)\right| \leqslant c_{2}\left(|\xi|^{p-2}+|\eta|^{p-2}\right)|\xi-\eta| . \tag{5}
\end{align*}
$$

Therefore $a_{i}(x, \xi)=\sum_{k=1}^{n} \xi_{k} \partial A_{k}(x, \xi) / \partial \xi_{i}+A_{i}(x, \xi)$. Hence any minimizer of the functional I in $W_{p}^{1}\left(\Omega^{(s)}\right) \cap$ $\dot{W}_{p}^{1}(\Omega)$ which satisfies the boundary condition (2)-(3) is a weak solution of (1)-(3), the existence of which under the above conditions is well-known.

We introduce some notations. Let γ be an arbitrary open set on Γ and let $T(\gamma, \delta)$ be a layer of thickness 2δ centered around γ. We denote by $\gamma_{\delta}^{ \pm}$the bases of the layer $T(\gamma, \delta)$, i.e., the surfaces located at the different sides of γ at distance δ. We set $T(\gamma, \delta, s)=T(\gamma, \delta) \backslash F^{(s)}$. Let $W(\gamma, \delta, s)=\left\{v \in W_{p}^{1}(T(\gamma, \delta, s)): v(x)=1\right.$ on $\gamma_{\delta}^{+}, v(x)=0$ on $\left.\gamma_{\delta}^{-}\right\}$. The main characteristic of influence of the sets $F^{(s)}$ is expressed in term of the following functions of sets

$$
\begin{equation*}
C_{A}(\gamma, \delta, s)=\inf _{\varphi^{(s)}} \int_{T(\gamma, \delta, s)} \sum_{i=1}^{n} A_{i}\left(x, \frac{\partial \varphi^{(s)}}{\partial x}\right) \frac{\partial \varphi^{(s)}}{\partial x_{i}} \mathrm{~d} x, \tag{6}
\end{equation*}
$$

where infimum is taken over the functions $\varphi^{(s)} \in W(\gamma, \delta, s)$. These quantities are referred to as A-conductivity of the set $T(\gamma, \delta, s)$, following Mazya [6] where they are thoroughly investigated.

Setting $\phi(x)=u^{(s)}(x)$ in the variational formulation of problem (1)-(3) we get

$$
\begin{equation*}
\left\|u^{(s)}\right\|_{W_{D}^{1}\left(\Omega^{(s)}\right)} \leqslant C . \tag{7}
\end{equation*}
$$

We have $\Omega^{(s)}=\Omega^{(s)-} \cup \Omega^{(s)+} \cup \Gamma$, where $\Omega^{(s) \pm}=\Omega^{(s)} \cap \Omega^{ \pm}$. Thus $u^{(s)} \in W_{p}^{1}\left(\Omega^{(s)+} \cup \Omega^{(s)-}\right)$; i.e., that there exist the functions $u^{(s) \pm} \in W_{p}^{1}\left(\Omega^{(s) \pm}\right)$ such that $u^{(s)}=\left(u^{(s)+}, u^{(s)-}\right)$ and $\|u\|_{W_{p}^{1}\left(\Omega^{(s)+}+\Omega^{(s)-}\right)}=:\|u\|_{W_{p}^{1}\left(\Omega^{(s)+}\right)}+$ $\|u\|_{W_{p}^{1}\left(\Omega^{(s)-}\right)}$. Analogously $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)=: W_{p}^{1}\left(\Omega^{+}\right) \times W_{p}^{1}\left(\Omega^{-}\right)$with the norm $\|u\|_{W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)}=:\|u\|_{W_{p}^{1}\left(\Omega^{+}\right)}+$ $\|u\|_{W_{D}^{1}\left(\Omega^{-}\right)}$.

We make the following hypothesis: The domains $\Omega^{(s) \pm}$ are such that for all s there exists a uniformly bounded extension operator from $W_{p}^{1}\left(\Omega^{(s)+} \cup \Omega^{(s)-}\right)$ into $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$. In the sequel a function $u^{(s)}$ in $W_{p}^{1}\left(\Omega^{(s)+} \cup \Omega^{(s)-}\right)$ and its extension in $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$will be denoted by the same symbol.

2. Main result

The main result of this Note is:
Theorem 1. Assume that the above conditions on problem (1)-(3) are satisfied and $f \in W_{p^{\prime}}^{-1}(\Omega \backslash \Gamma)$. As $s \rightarrow \infty$, we require that
(a) the set $F^{(s)}$ lies in an arbitrary small neighborhood of the manifold $\Gamma \subset \Omega$,
(b) for any portion $\gamma \in \Gamma$, there exist the limits

$$
\begin{equation*}
\lim _{\delta \rightarrow \infty} \lim _{s \rightarrow \infty} C_{A}(\gamma, \delta, s)=\lim _{\delta \rightarrow \infty} \overline{\lim }_{s \rightarrow \infty} C_{A}(\gamma, \delta, s)=\int_{\gamma} c(x) \mathrm{d} \Gamma, \tag{8}
\end{equation*}
$$

where c is a nonnegative, measurable function on Γ.
Then the sequence of solutions $u^{(s)}$ of problem (1)-(3) converges weakly in $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$and strongly in $W_{q}^{1}\left(\Omega^{+} \cup \Omega^{-}\right), 1<q<p$, to a function u which is a solution of the transmission problem

$$
\begin{align*}
& -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}\left(x, \frac{\partial u}{\partial x}\right)\right)=f, \quad \text { in } \Omega \backslash \Gamma, \tag{9}\\
& \left(\frac{\partial u}{\partial v_{A}}\right)_{+}+\left(\frac{\partial u}{\partial v_{A}}\right)_{-}=p c(x)\left|u_{+}-u_{-}\right|^{p-2}\left(u_{+}-u_{-}\right), \quad \text { on } \Gamma, \tag{10}\\
& u=0, \quad \text { on } \partial \Omega, \tag{11}
\end{align*}
$$

where the signs + and - indicate the boundary values of the function on the different sides of $\Gamma,\left(\frac{\partial u}{\partial \nu_{A}}\right)_{ \pm}$is the derivative along the normal to Γ in the direction corresponding to \pm.

Let $T(\Gamma, \delta)$ be a layer of thickness 2δ centered around the manifold Γ. Let $T(\Gamma, \delta, s)=T(\Gamma, \delta) \backslash F^{(s)}$. We consider the functional

$$
\Phi_{\delta}^{(s)}\left(\psi^{(s)}\right)=\int_{T(\Gamma, \delta, s)} \sum_{i=1}^{n} A_{i}\left(x, \frac{\partial \psi^{(s)}}{\partial x}\right) \frac{\partial \psi^{(s)}}{\partial x_{i}} \mathrm{~d} x,
$$

over the set \widetilde{W} of functions from $W_{p}^{1}(T(\Gamma, \delta, s))$ taking on the surfaces $\Gamma_{\delta}^{+}, \Gamma_{\delta}^{-}$bounding the layer $T(\Gamma, \delta)$ the values of $u(x) \in W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$. It is a well known fact that under the growth conditions on A_{i}, there exists at least a function $u^{(s)}$ minimizing $\Phi_{\delta}^{(s)}$, i.e.,

$$
\Phi_{\delta}^{(s)}\left(u^{(s)}\right)=\inf _{\psi^{(s)} \in \widetilde{W}} \Phi_{\delta}^{(s)}\left(\psi^{(s)}\right)
$$

The following key result holds:
Theorem 2. Assume that the conditions of Theorem 1 are satisfied. Then for any function $u \in W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$the following relation holds

$$
\lim _{\delta \rightarrow 0} \overline{\lim }_{s \rightarrow \infty} \Phi_{\delta}^{(s)}(u)=\lim _{\delta \rightarrow 0} \varliminf_{s \rightarrow \infty} \Phi_{\delta}^{(s)}(u)=\int_{\Gamma} c\left|u^{+}-u^{-}\right|^{p} \mathrm{~d} \Gamma .
$$

This theorem gives an accurate behavior of the energy in the vinicity of the sets $F^{(s)}$ and is responsible for the appearance of the additional term in the transmission conditions.

3. Proof of Theorem 1

We give an idea of the proof of Theorem 1. From (7) and the existence of the extension assumed in the theorem it follows that $\left\|u^{(s)}\right\|_{W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)} \leqslant C$. Therefore a function $u \in W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$exists such that $u^{(s)}$ converges to u weakly in $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$. In fact following the arguments of Boccardo and Murat [1] we get a more precise convergence, namely $u^{(s)}$ strongly converges to u in $W_{q}^{1}\left(\Omega^{+} \cup \Omega^{-}\right), 1<q<p$. Let $u^{ \pm}$be the restriction of u to $\Omega_{\delta}^{ \pm}$. We show that $u^{ \pm}$satisfies the relation

$$
\int_{\Omega_{\delta}^{ \pm}} \sum_{i=1}^{n} A_{i}\left(x, \frac{\partial u^{ \pm}}{\partial x}\right) \frac{\partial \varphi}{\partial x_{i}} \mathrm{~d} x=\int_{\Omega_{\delta}^{ \pm}} f \varphi \mathrm{~d} x, \quad \forall \varphi \in W_{p}^{1}\left(\Omega_{\delta}^{ \pm}\right) .
$$

Using this relation together with the conditions (4)-(5) on $A(x, \xi)$ and some appropriate estimates we get that

$$
\begin{equation*}
u^{(s)} \rightarrow u^{ \pm}, \quad \text { strongly in } \dot{W}_{p}^{1}\left(\Omega_{\delta}^{ \pm}\right) . \tag{12}
\end{equation*}
$$

Next we let $w \in \dot{W}_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$be arbitrary and define the function $w_{\delta}^{(s)}$ by: $w_{\delta}^{(s)}(x)=w(x)$ if $x \in \Omega_{\delta}^{ \pm}$and $w_{\delta}^{(s)}(x)=$ $w^{(s)}(x)$ if $x \in T(\Gamma, \delta)$, where $w^{(s)} \in W_{p}^{1}\left(\Omega^{(s)}\right)$ and is a minimizer of $\Phi_{\delta}^{(s)}$ in $W_{p}^{1}(T(\Gamma, \delta, s))$. Let

$$
\begin{equation*}
J(w)=\int_{\Omega^{+} \cup \Omega^{-}}\left[\sum_{i=1}^{n} A_{i}\left(x, \frac{\partial w}{\partial x}\right) \frac{\partial w}{\partial x_{i}}+f w\right] \mathrm{d} x+\int_{\Gamma} c(x)\left|w^{+}-w^{-}\right|^{p} \mathrm{~d} \Gamma, \tag{13}
\end{equation*}
$$

be a functional on $\dot{W}_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$, the class of functions in $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$which vanish on $\partial \Omega$. Under the conditions imposed on the functions $A_{i}(x, p),(x, p) \in \mathbf{R}^{2 n}$, any minimizer of the functional J in $\dot{W}_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$is also a weak solution of problem (9)-(11). We prove that the function u minimizes J in $\dot{W}_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$. We have

$$
I\left(w_{\delta}^{(s)}\right)=\int_{\Omega_{\delta}^{+} \cup \Omega_{\delta}^{-}}\left[\sum_{i=1}^{n} A_{i}\left(x, \frac{\partial w}{\partial x}\right) \frac{\partial w}{\partial x_{i}}+f w\right]+\Phi_{\delta}^{(s)}(w) .
$$

By Theorem 2 we get

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \overline{\lim }_{s \rightarrow \infty} I\left(w_{\delta}^{(s)}\right)=J(w) \tag{14}
\end{equation*}
$$

Next let $u_{\delta}^{(s)} \in \dot{W}_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$be an extension of $u^{(s)}$ from $\Omega_{\delta}^{+} \cup \Omega_{\delta}^{-}$to $\Omega^{+} \cup \Omega^{-}$such that $u_{\delta}^{(s)} \rightarrow u$ strongly in $\dot{W}_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$as $\delta \rightarrow 0, s \rightarrow \infty$. We have

$$
I\left(u^{(s)}\right)=\int_{\Omega_{\delta}^{+} \cup \Omega_{\delta}^{-}}\left[\sum_{i=1}^{n} A_{i}\left(x, \frac{\partial u_{\delta}^{(s)}}{\partial x}\right) \frac{\partial u_{\delta}^{(s)}}{\partial x_{i}}+f u_{\delta}^{(s)}\right]+\Phi_{\delta}^{(s)}\left(u_{\delta}^{(s)}\right) .
$$

By Theorem 2 and estimates involving (4), (5) and (12) we get

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{s \rightarrow \infty} I\left(u^{(s)}\right) \geqslant J(u) . \tag{15}
\end{equation*}
$$

We have $I\left(u^{(s)}\right) \leqslant I\left(w_{\delta}^{(s)}\right)$. Thus (14) and (15) imply that $J(u) \leqslant J(w) . w$ being arbitrary we get that u minimizes J and therefore satisfies (9)-(11).

Next we give an example of a geometry for $F^{(s)}$ for which the function c in (8) can be explicitly computed. In \mathbf{R}^{n}, we consider for each s a layer $T^{(s)}$ of thickness $h^{(s)}$ bounded from one side by a sphere Γ and from the other side by another sphere $\Gamma^{(s)}$ parallel to Γ and at a distance $h^{(s)}$ from it. We remove from Γs disjoint connected open sets $\sigma_{i}=\sigma_{i}^{(s)}$ of diameter $d_{i}^{(s)}$. The normals through the points $x \in \sigma_{i}$, cut some channels $T_{i}^{(s)}$ through $T^{(s)}$. Set $F^{(s)}=\overline{T^{(s)} \backslash \bigcup_{i=1}^{s} T_{i}^{(s)}}$. Let Ω be smooth bounded domain in \mathbf{R}^{n} containing $\overline{T^{(s)}}$. In the region $\Omega^{(s)}=\Omega \backslash F^{(s)}$, we consider the boundary value problem

$$
\begin{align*}
& \Delta_{p} u^{(s)}=-\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(\left|\frac{\partial u^{(s)}}{\partial x}\right|^{p-2} \frac{\partial u^{(s)}}{\partial x_{j}}\right)=f, \quad x \in \Omega^{(s)}, \tag{16}\\
& \frac{\partial u^{(s)}}{\partial v_{\Delta_{p}}}=0, \quad \text { on } \partial F^{(s)}, \quad u=0 \quad \text { on } \partial \Omega . \tag{17}
\end{align*}
$$

We denote by $\Omega^{+}\left(\Omega^{-}\right)$the region interior (exterior) to Γ and by $\Omega^{(s)-}$ the set $\Omega^{(s)} \backslash \overline{\Omega^{-}}$. Through appropriate rescalings the arguments of [8, §4] related to the construction of extension operator for perforated domains of type I can be used to produce an extension from $W_{p}^{1}\left(\Omega^{(s)-}\right)$ into $W_{p}^{1}\left(\Omega^{-}\right)$uniformly bounded. Hence the required extension from $W_{p}^{1}\left(\Omega^{(s)+} \cup \Omega^{(s)-}\right)$ into $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$follows. Let γ be a portion of the surface Γ and $T(\gamma, \delta)$ be the layer with thickness 2δ centered around γ with bases $\gamma_{\delta}^{ \pm}$. We define the quantity

$$
\begin{equation*}
C_{\Delta_{p}}(\gamma, \delta, s)=\frac{1}{p} \inf _{w^{(s)}} \int_{T(\gamma, \delta, s)}\left|\frac{\partial w^{(s)}}{\partial x}\right|^{p} \mathrm{~d} x \tag{18}
\end{equation*}
$$

where $T(\gamma, \delta, s)=T(\gamma, \delta) \backslash \overline{T^{(s)} \backslash \bigcup_{i=1}^{s} T_{i}^{(s)}}$, and the infimum is taken over the functions $w^{(s)} \in W(\gamma, \delta, s)$. We denote $\overline{T_{i}^{(s)}} \cap \Gamma$ and $\overline{T_{i}^{(s)}} \cap \Gamma^{(s)}$ by $\sigma_{i}^{(s)-}$ and $\sigma_{i}^{(s)+}$, respectively. Let $R_{i}^{(s)}$ be the distance between $\sigma_{i}^{(s)-}$ and $\bigcup_{i \neq j} \sigma_{j}^{(s)-}$ and assume $\max _{i}\left\{R_{i}^{(s)}, d_{i}^{(s)}\right\}<\delta$, for all s. We make the following assumptions:

$$
\begin{align*}
& \overline{\lim }_{s \rightarrow \infty} \sum_{\gamma(s)} \frac{\left[d_{i}^{(s)}\right]^{n-1}}{\left[h^{(s)} R_{i}^{(s)}\right]^{p}} \leqslant C_{2} ; \quad \text { as } s \rightarrow \infty R_{i}^{(s)}=\mathrm{o}\left(d_{i}^{(s)}\right) \rightarrow 0 ; \\
& \varlimsup_{s \rightarrow \infty} \sum_{\gamma(s)} \operatorname{mes}\left(\sigma_{i}^{(s)}\right)\left[h^{(s)}\right]^{1-p}=\int_{\gamma} c(x) \mathrm{d} \Gamma \tag{19}
\end{align*}
$$

where $c(x)$ is a nonnegative function on $\Gamma, \sum_{\gamma(s)}$ is the sum over all i for which $\sigma_{i}^{(s)}$ belong to $\gamma \subset \Gamma$ and C_{i} are positive constants. Then we have the following result

Theorem 3. Let the conditions (19) be satisfied and $n>p+1$, then the sequence of solutions $u^{(s)} \in W_{p}^{1}\left(\Omega^{(s)}\right)$ of problem (16)-(17) converges weakly in $W_{p}^{1}\left(\Omega^{+} \cup \Omega^{-}\right)$to a function $u(x)$ which is a solution of the problem

$$
\begin{align*}
& \Delta_{p} u=f, \quad \text { in } \Omega \backslash \Gamma, \tag{20}\\
& \left(\frac{\partial u}{\partial v_{\Delta_{p}}}\right)_{+}+\left(\frac{\partial u}{\partial v_{\Delta_{p}}}\right)_{-}=p c(x)\left|u_{+}-u_{-}\right|^{p-2}\left(u_{+}-u_{-}\right) \quad \text { on } \Gamma, \quad u=0 \quad \text { on } \partial \Omega, \tag{21}
\end{align*}
$$

where c is the function defined in (19).

References

[1] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (6) (1992) 581-597.
[2] D. Cioranescu, S.J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (2) (1979) 590-607.
[3] A. Damlamian, Le problème de la passoire de Neumann, Rend. Sem. Mat. Univ. Politec. Torino 43 (3) (1985/86) 427-450.
[4] A. Damlamian, P. Donato, Which sequences of holes are admissible for periodic homogenization with Neumann boundary conditions, A tribute to J.L. Lions, ESAIM Control Optim. Calc. Var. 8 (2002) 555-585.
[5] V.A. Marchenko, E. Ya. Khruslov, Boundary Value Problems in Domains with a Fine-Grained Boundary, Naukova Dumka, Kiev, 1974 (in Russian).
[6] V.G. Mazya, Sobolev Spaces, Springer-Verlag, New York, 1985.
[7] F. Murat, The Neumann sieve, in: Nonlinear Variational Problems, Isola d'Elba, 1983, in: Res. Notes in Math., vol. 127, Pitman, Boston, MA, 1985, pp. 24-32.
[8] O.A. Oleinik, A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992.
[9] E. Sanchez-Palencia, Boundary value problems in domains containing perforated walls, in: Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. III, Paris, 1980/1981, in: Res. Notes in Math., vol. 70, Pitman, Boston, MA, London, 1982, pp. 309-325.

[^0]: E-mail address: mamadou.sango@up.ac.za (M. Sango).

