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Abstract

This Note presents a very efficient numerical strategy for computing weak solutions of a scalar conservation law which fails to
be genuinely nonlinear. In such a situation, the dynamics of shock solutions turns out to be mainly driven by a prescribed kinetic
function that imposes the speed of propagation of the discontinuities. We show how to enforce the validity of the kinetic criterion at
the discrete level. The resulting scheme provides, in addition, sharp profiles. Numerical evidence are included. 7o cite this article:
C. Chalons, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Schémas transport-équilibre pour ’approximation des chocs nonclassiques. Cette Note présente un algorithme tres efficace
pour le calcul des solutions faibles d’une loi de conservation scalaire non vraiment nonlinéaire. Dans ce contexte, la dynamique
des solutions choc repose principalement sur la donnée d’une fonction cinétique qui fixe la vitesse de propagation des disconti-
nuités. Nous montrons comment forcer la validité du critére cinétique au niveau discret. Le schéma obtenu fournit par ailleurs des
discontinuités sans diffusion numérique. Des résultats numériques sont présentés. Pour citer cet article : C. Chalons, C. R. Acad.
Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We are interested in computing nonclassical weak solutions of an initial-value problem for a scalar conservation
law of the form

{ qu+0dcfu)=0, ux,1)eR, (x,1)eRx R*,

u(x, 0) = g (x), M

where f:R — R is a (smooth) nonconvex flux-function. Generally speaking, solutions of problem (1) may be discon-
tinuous and are not uniquely determined by initial data uo. According to a general regularization principle, we thus
ask solutions of (1) to satisfy a single entropy inequality of the form

0 U (u) + 9 F(u) <0, @
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where U :R — R and F:R — R are specified functions such that U is strictly convex and F' = U’ f’. When f is
convex, entropy condition (2) actually selects a unique classical solution of (1). When f fails to be convex, it is nec-
essary to supplement (1)—(2) with an additional selection criterion called kinetic relation from [4]. More precisely, the
Riemann problem associated with (1)—(2) still admits a one-parameter family of solutions, which may contain shock
waves violating Lax shock inequalities. Such discontinuities are referred as to undercompressive shocks or nonclas-
sical shocks. In order for the uniqueness to be ensured, a kinetic relation needs to be added along each nonclassical
discontinuity connecting a left state u_ to a right state u . It takes the form u; = ¢”(u_) or u_ = ¢ " (uy) where
¢ is the so-called kinetic function and ¢~ its inverse. We refer to [4] for a general theory of nonclassical entropy
solutions.

The numerical approximation of nonclassical solutions is known to be very challenging. The main difficulty is the
respect of the kinetic relation at the discrete level. At once, such nonclassical solutions are actually present in real and
complex problems coming from the physics. Let us mention for instance the study of compressible fluids undergoing
vapor-liquid phase changes, which is our main motivation.

In this Note, we present a new scheme for capturing discontinuities whose dynamics is driven by a kinetic function.
Our strategy deals directly with the kinetic function ¢” to tackle the nonclassical solutions. The resulting algorithm
provides numerical results in full agreement with exact ones, whatever the strength of the shocks are. In particular,
our scheme leaves sharp isolated nonclassical shocks.

2. The case of cubic flux and nonclassical Riemann solver

Without loss of generality, we take f(u) = u> which is to some extent the simplest example of a nonconvex func-
tion, and refer to [1] for more general flux functions. We consider weak solutions of (1) satisfying entropy inequality
(2) with U (u) = u? and F (u) = %u“, and choose (again without restriction) <pb(u) = —fBu as a kinetic function, with
B €[1/2, 1) so that each nonclassical shock obeys (2).

Given two constant states u;, u, such that u; > 0, we consider a Riemann initial data u( defined by ug(x) = u; if
x < 0and ug(x) = u, if x > 0. Following [4] and defining (pn(u) =—u— <pb(u), the solution of (1)—(2), supplemented
with the kinetic criterion associated with ¢°, is given as follows:

(1) If uy > uy, the solution is a rarefaction wave connecting u; to u,.

(2) If u, € [@*(u;), up), the solution is a classical shock wave connecting u; to u,.

(3) Ifu, € (¢°(ur), 9*(u;)), the solution contains a nonclassical shock connecting u; to ¢ (u;), followed by a classical
shock connecting (pb(ul) to u;.

@) If u, < (p"(ul), the solution contains a nonclassical shock connecting u; to gpb(ul), followed by a rarefaction
connecting (pb(ul) to u,.

3. Numerical approximation

We now present a suitable algorithm for approximating these Riemann solutions. Let be given a time step Af and a
space step Ax. Introducing x1/2 = jAx for j € Z and t" = nAt for n € N, we seek at each time " an approximation
u" of u on each interval [x i—1/2; Xj+12). In this context, we choose without restriction a two-point numerical flux
function g : (4, v) — g(u, v) consistent with the flux function f.

Let us first motivate our algorithm. Actually, it is observed in [1,2] that a classical conservative scheme associated
with g is not able to propagate any isolated nonclassical shock. Instead, some spurious values are created by the
scheme, eventually leading to a damaged numerical solution. Our algorithm aims at removing these spurious values.
This is achieved in the first step of the method by systematically making stationary the nonclassical discontinuities.
Which means in particular that the conservation property is lost, so that the use of a nonconservative update formula
is completely natural in this first step. Then, the dynamics of the nonclassical discontinuities is taken into account in
the second step of the strategy, thus restoring (in a weak sense) the conservation property.

First step (" — t"*17) As motivated above, this step aims at making stationary the nonclassical discontinuities
of our problem. For that, we introduce the following nonconservative update formula:

T =l = (eh -8l ), J€Z, withh=At/Ax, )
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where the numerical fluxes g]@ 12 and g f 412 have to be suitably defined. In this note, we will focus ourselves on the

numerical approximation of the nonclassical discontinuities only (the most difficult ones to capture numerically), that

is those separating two states u_ and u such that uy = ¢”(u_) < ¢?(u_) when u_ > 0. Then, it is easily checked
: L R n .

that defining 8iv12 and 8jy12 a8 follows when u'i > 0:

— .
[y i, <, o
sz g uiyy) otherwise,
b .
s g uliyy) otherwise,

and, in a first approach at least, equal to g;11/2 when u;’ < 0 (see [1] for details) is sufficient to keep at stationary

equilibrium all the discontinuities separating two states #_ and u such that u, = ¢"(u_).

Second step ("'~ — "*1) This step deals with the dynamics of the nonclassical discontinuities left stationary
during the first step. We first recall that the speed of propagation o (u_, u4) of a discontinuity between u_ and u 4
is given by Rankine—Hugoniot conditions, that is o (u—_, uy) = [f(u4+) — f(u_)]/[ut+ — u_]. We then define at each
interface x ;1,2 a speed of propagation o112 by

n+l—  nt+l— ieon ge,,n
o= 0T ) < ), ©)
0 otherwise,
and solve at each discontinuity x;1/2 a transport equation with speed ¢ 1,2. In order to avoid the appearance of

new spurious values and to get a new approximation u" 1 at time 1! =" + Ar, we propose to pick up randomly

on interval [x;_1/2, xj+1/2[ a value in the juxtaposition of these Riemann solutions at time At chosen small enough
to avoid wave interactions. Given a well distributed random sequence (a,,) within interval (0, 1), it amounts to set:

n+l— +
u;y if a,4+1 € [0, )‘Gj—l/Z[’

_ . _ o1 p=min(0j41/2,0),
W= 1 i € oy b Ao ol with {42 sy (7)
J S J J 0 =max(0j-1/2,0).

1 ifan+1 S [1 + )&O'j:r]/za 1[7

4. Numerical experiments

We give two numerical evidences to validate our scheme. We take a Roe scheme as a basic numerical flux g, and
the van der Corput random sequence for (a,). For the kinetic function ¢”, we set 8 = 3 We consider the typical
nonclassical behaviors of the Riemann solution given in Section 2, when taking #; =4 and u, equal to —2 (test 1)

or —5 (test 2). Numerical solutions are plotted on Fig. 1 for Ax = 1072,

" Exact solution at fime 1=0,15 —— ' ' " Exact solution at time 10,045 ——
4 Nurnerical solution =-—+--- | 4 Numerical solution -+~ |

L ! L L L L
-1 0 1 2 3 4 -1 0 1 2 3 4

Fig. 1. Nonclassical solutions: test 1 (left) and test 2 (right).

Fig. 1. Solutions nonclassiques : test 1 (gauche) et test 2 (droite).
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We observe that the numerical solutions fully agree with the exact ones. In particular, the right states of the non-
classical waves are exactly captured, which is remarkable, while there are not any points in their profile (see [1] and
the references therein). For test 1, we note that the classical shock contains some numerical diffusion induced by the
Roe scheme. In [1], we show how to slightly modify the definitions of the numerical fluxes g]L 12 and gf 12 in
(4)—(5) in order to make sharp the classical shocks, too.

To conclude, an efficient numerical strategy has been presented for computing nonclassical solutions of a particular
scalar conservation law. It provides sharp nonclassical interfaces propagating at the right speed whatever the strength
of interfaces are. The method turns out to be nonconservative but measures in [1] have shown that the loss of conserva-
tion is extremely low, while numerical solutions fully agree with exact ones. We emphasize that our approach is built
without explicitly using the knowledge of the underlying nonclassical Riemann solver, contrary to Glimm’s method for
instance. Which means that it is not an expensive method and that it may be used for more complex applications. An
application to pedestrian flows has been addressed in [2]. In [3], we consider the case of a hyperbolic-elliptic model
with phase changes that has initially motivated the present study.

References

[1] C. Chalons, Transport-Equilibrium schemes for computing nonclassical shocks. I. Scalar conservation laws, Laboratoire J.-L. Lions, Preprint
R05031, 2005. Available at http://www.ann.jussieu.fr.

[2] C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows, Laboratoire J.-L. Lions, Preprint R05032, 2005. Available
at http://www.ann.jussieu.fr.

[3] C. Chalons, Transport-equilibrium schemes for computing nonclassical shocks, II. A hyperbolic-elliptic model of phase transitions, in prepara-
tion.

[4] P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, E.T.H. Lecture Notes Series,
Birkhéuser, 2002.



