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Abstract

We prove existence of bound and ground states of some systems of coupled nonlinear Schrödinger equations. To cite this article:
A. Ambrosetti, E. Colorado, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Solutions à énergie finie et minimale d’équations de Schrödinger non linéaires couplées. On montre l’existence de solutions
à énergie finie et énergie minimale pour quelques systèmes couplés d’équations de Schrödinger non linéaires. Pour citer cet
article : A. Ambrosetti, E. Colorado, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

On s’intéresse à l’existence des solutions de quelques systèmes couplés d’équations de Schrödinger non linéaires.
Concernant le système (2) on montre qu’ils existent deux constantes Λ′ > Λ > 0 qui dépendent uniquement de λ1,
λ2, µ1 et µ2, telles que le système (2) admet une solution à énergie finie, (u, v), avec u �≡ 0, v �≡ 0, à condition que,
soit β < Λ, ou β > Λ′. Si β > 0 on a u > 0 et v > 0. De plus, on montre que dans le cas où β > Λ′, la solution (u, v)

est une solution à énergie minimale. Une comparaison avec un résultat récent [5] est faite dans les Remarques 3 et 5.
Concernant le système (6) on montre l’existence de solutions de type « multi-bumps ».

1. Introduction

In spite of the interest that system of coupled NLS (Nonlinear Schrödinger) equations have in nonlinear Optics,
see e.g. [1], only few rigorous general results have been proved so far. Here we will focus on systems of two coupled
NLS equations like{−�u + λ1u = µ1u

3 + βgu(u, v),

−�v + λ2v = µ2v
3 + βgv(u, v),

(1)
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where λi,µi > 0, i = 1,2, β is a real parameter and x ∈ R
n, n = 2,3.3

We use the following notation: E denotes the Sobolev space W 1,2(Rn), with scalar product (u | w) = ∫
(∇u ·

∇v + uw)dx and norm ‖u‖2 = (u | u) (hereafter
∫

means
∫

Rn ); H denotes the space of radial W 1,2(Rn) functions;
(u | w)i = ∫

(∇u · ∇w + λiuw)dx and ‖u‖2
i = (u | u)i , i = 1,2; and

Φ(u,v) = I1(u) + I2(v) − β

∫
g(u, v)dx, where Ii(u) = 1

2
‖u‖2

i − 1

4
µi

∫
u4 dx, u ∈ E, i = 1,2.

We say that (u∗, v∗) �= (0,0) is a bound state of (1) if Φ ′(u∗, v∗) = 0. A solution (ũ, ṽ) of (1) is called a ground state
if ũ > 0, ṽ > 0 and Φ(ũ, ṽ) = min{Φ(u,v): (u, v) ∈ E × E \ {(0,0)},Φ ′(u, v) = 0}.

More details and further results are contained in [3].

2. Global results

Motivated by the recent paper [5], we deal here with the case in which g(u, v) = 1
2u2v2, namely with the system{−�u + λ1u = µ1u

3 + βuv2,

−�v + λ2v = µ2v
3 + βu2v.

(2)

To state our existence results, we need to introduce some notation. Let U be denote the unique positive radial solution
of −�u + u = u3 and set

Ui(x) =
√

λi

µi

U
(√

λi x
)
, i = 1,2.

Remark that these Ui are solutions of −�u + λiu = µiu
3. We also denote by γi , i = 1,2, the following positive

constants which depend on λi , µi , i = 1,2, by setting

γ 2
1 = inf

ϕ∈H\{0}
‖ϕ‖2

2∫
U2

1 ϕ2
, γ 2

2 = inf
ϕ∈H\{0}

‖ϕ‖2
1∫

U2
2 ϕ2

.

It is worth pointing out immediately that later on we will show that

µj

(
λi

λj

)1−n/4

� γ 2
j � max

{
µj

(
λi

λj

)1−n/2

,µj

λi

λj

}
, i, j = 1,2, i �= j. (3)

Our first result is concerned with existence of bound states.

Theorem 1. Let Λ = min{γ 2
1 , γ 2

2 }. Then (2) has a radial bound state (u∗, v∗), provided that β < Λ. If β > 0 these
bound states are positive, namely u∗ > 0, v∗ > 0.

Our second result deals with ground states.

Theorem 2. Let Λ′ = max{γ 2
1 , γ 2

2 }. Then (2) has a radial ground state (ũ, ṽ) provided β > Λ′.

Remark 3. Theorem 1 is related to [5, Theorem 2]. Theorem 2 is new.4 In particular, there are no existence result
in [5] dealing with β � 1. For further comparisons with [5], see Remark 5.

In the rest of the section, we will give an outline of the proofs of Theorems 1 and 2. We will work in H × H . We
set γ (u, v) = (I ′

1(u)|u) + (I ′
2(v)|v) − 2β

∫
u2v2 dx and

M = {
(u, v) ∈ H × H \ {

(0,0)
}
: γ (u, v) = 0

}
.

3 We could also consider a system in R
n, with a nonlinearity of the type up , provided p < n+2

n−2 .
4 After this paper was completed, we learned that some similar results have been obtained independently in the preprint “Positive solutions for a

weakly coupled nonlinear Schrödinger system” by L. Maia, E. Montefusco and B. Pellacci. We thank Simone Secchi who brought to our attention
this paper.
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One has that(∇γ (u, v) | (u, v)
) = −2

(‖u‖2
1 + ‖v‖2

2

)
< 0, ∀(u, v) ∈M, (4)

and thus M is a smooth manifold locally near any point (u, v) �= (0,0), such that γ (u, v) = 0. Moreover, from
Φ ′′(0,0)[(φ1, φ2)]2 = I ′′

1 (0)[φ1]2 + I ′′
2 (0)[φ2]2 > 0, ∀(φ1, φ2) ∈ E × E \ {(0,0), we infer that (0,0) is a strict min-

imum for Φ . As a consequence, (0,0) is an isolated point of the set {γ (u, v) = 0}, proving that M is a smooth
complete manifold. Furthermore, (4) also implies that any critical point of Φ constrained on M is a critical point
of Φ . Note that for (u, v) ∈ M one has that Φ(u,v) = 1

4 (‖u‖2
1 + ‖v‖2

2) > 0.
Since Ui satisfy −�u + λiu = µiu

3, then (U1,0) and (0,U2) are particular solutions of (2). We also put

Ni = {
u ∈ H :

(
I ′
i (u)|u)

i
= 0

} =
{
u ∈ H : ‖u‖2

i − µi

∫
u4 = 0

}
, i = 1,2.

One has that Ui ∈Ni and φ ∈ TUi
Ni iff (Ui | φ)i = 2µi

∫
U3

i φ, while (φ1, φ2) ∈ T(u,v)M iff

(u | φ1)1 + (v | φ2)2 = 2µ1

∫
u3φ1 + 2µ2

∫
v3φ2 + β

∫
uφ1v

2 + β

∫
u2vφ2.

Thus (φ1, φ2) ∈ T(U1,0)M, resp. T(0,U2)M, iff (Ui | φi)i = 2µi

∫
U3

i φi , proving that

(φ1, φ2) ∈ T(U1,0)M ⇔ φ1 ∈ TU1N1, (φ1, φ2) ∈ T(0,U2)M ⇔ φ2 ∈ TU2N2. (5)

The next lemma is the key ingredient of our arguments.

Lemma 4. (i) ∀β < Λ, (U1,0) and (0,U2) are strict local minima of Φ on M.
(ii) ∀β > Λ′, (U1,0) and (0,U2) are saddle points of Φ on M.

Proof. (i) Taking into account that Φ ′(U1,0) = Φ ′(0,U2) = 0, one has

Φ ′′(U1,0)[φ1, φ2]2 = I ′′
1 (U1)[φ1]2 + ‖φ2‖2

2 − β

∫
U2

1 φ2
2 , (φ1, φ2) ∈ T(U1,0)M.

It is well known that U1 is a minimum of I1 on N1. Precisely, there is c1 > 0 such that

I ′′
1 (U1)[φ]2 � c1‖φ‖2

1, ∀φ ∈ TU1N1.

Then, using (5), we get

Φ ′′(U1,0)[φ1, φ2]2 � c1‖φ1‖2
1 + ‖φ2‖2

2 − β

∫
U2

1 φ2
2 � c1‖φ1‖2

1 + ‖φ2‖2
2 − β

γ 2
1

‖φ2‖2
2.

Therefore, if β < γ 2
1 there exists c2 > 0 such that

Φ ′′(U1,0)[φ1, φ2]2 � c1‖φ1‖2
1 + c2‖φ2‖2

2.

Similarly, if β < γ 2
2 , ∃c′

i > 0 such that

Φ ′′(0,U2)[φ1, φ2]2 � c′
1‖φ1‖2

1 + c′
2‖φ2‖2

2.

(ii) Let β > γ 2
1 . There exists ψ̃ ∈ H such that

γ 2
1 <

‖ψ̃‖2
2∫

U2
1 ψ̃2

< β.

According to (5), one has that (0, ψ̃) ∈ T(U1,0)M. There holds

Φ ′′(U1,0)
[
(0, ψ̃)

]2 = ‖ψ̃‖2
2 − β

∫
U2

1 ψ̃2 < 0.

Similarly, if β > γ 2, there exist φ̃ such that Φ ′′(0,U2)[(φ̃,0)]2 < 0. �
2
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Proof of Theorem 1. Let β < Λ. According to Lemma 4(i), we can apply the Mountain Pass theorem to Φ on M
(the Palais–Smale condition is satisfied because H , the space of radial W 1,2(Rn) functions, is compactly embedded
in L4(Rn) for n = 2,3, see [6]). We get a critical point (u∗, v∗) ∈ H ×H of Φ and hence a (radial) bound state of (2).
Moreover, since (u∗, v∗) ∈ M, then (u∗, v∗) �= (0,0). In order to show that (u∗, v∗) is a positive solution for β > 0,
we consider (u+ = positive part of u)

Ĩi (u) = 1

2
‖u‖2

i − 1

4
µi

∫
u4+, Φ̃(u, v) = Ĩ1(u) + Ĩ2(v) − 1

2
β

∫
u2+v2+ dx.

Of course, the corresponding Nehari manifold M̃ is not empty. Indeed, (U1,0), (0,U2) ∈ M̃. Remark that now
(u, v) �→ ∫

u2+v2+ is not C2. However, it is possible to modify the preceding arguments to show that M̃ has the same
properties of M. In particular, Lemma 4 still holds yielding, for β < Λ, a Mountain-Pass critical point (u∗, v∗) ∈ M̃
solving{−�u + λ1u = µ1u

3+ + βu+v2+,

−�v + λ2v = µ2v
3+ + βu2+v+.

If β > 0 , then u∗ � 0, v∗ � 0. In addition, one still has that Φ(u∗, v∗) > max{Φ(U1,0),Φ(0,U2)}. Let us show that
v∗ �≡ 0. Otherwise, u∗ �≡ 0 and from Φ ′(u∗,0) = 0 it follows that u∗ is a non-trivial solution of

−�u∗ + λ1u
∗ = µ1(u

∗)3, u∗ ∈ H.

Since u∗ � 0 and u∗ �≡ 0, then u∗ = U1, namely (u∗, v∗) = (U1,0), and we get a contradiction to the fact, remarked
above, that Φ(u∗, v∗) > Φ(U1,0). A similar argument proves that u∗ �≡ 0. Since both u∗ and v∗ are �≡ 0, using the
maximum principle we get u∗ > 0 and v∗ > 0. �
Proof of Theorem 2. If β > Λ′, (U1,0) and (0,U2) are saddle points for Φ on M. Therefore minM Φ is achieved
at some (ũ, ṽ) such that 0 < Φ(ũ, ṽ) < min{Φ(U1,0),Φ(0,U2)}. Repeating the preceding arguments, we find once
more that both ũ > 0 and ṽ > 0. Using Schwarz symmetrization, it is easy to check that the solution (ũ, ṽ) is minimal
among all solutions in E × E \ {(0,0)} and thus is a ground state. �
Remarks 5. (i) If 0 < β <

√
µ1µ2, [5, Theorem 2] contains a result dealing with the existence of solutions (u, v),

u,v > 0, 5 which are minimal among all the solutions such that both the components are positive. They are called in [5]
ground states, are obtained by a different constrained minimization procedure and could have Morse index 2, like our
bound states in Theorem 1. Indeed, we suspect that the latter ones are nothing but the solutions of [5, Theorem 2]. On
the other hand, the solutions we found in Theorem 2 are ground states in a sense stronger than [5]: they are minimal
among all the solutions in E ×E \ {(0,0)}, have Morse index 1 (in the non-degenerate case) and hence are the natural
candidates to give rise to orbitally stable solitary waves. Another new feature of our results is that the bounds Λ,Λ′
depend also on the ratio λ1/λ2.

(ii) If λ1 = λ2 and β ∈ (0,Λ) ∪ (Λ′,+∞), there are explicit solutions of (2). If e.g. λ1 = λ2 = 1, they are given by
(U∗

1 ,U∗
2 ) where

U∗
i = αiU, α2

i = µj − β

µiµj − β2
, i �= j, i = 1,2.

We cannot exclude that these solutions coincide with those found in Theorems 1 and 2.

We end this section by giving an idea how one proves the estimates (3). Let

σ 2
i ≡ inf

ϕ∈E\{0}
‖ϕ‖2

i

‖ϕ‖2
L4

= inf
ϕ∈E, ‖ϕ‖

L4 =1
‖ϕ‖2

i ,

denote the best Sobolev constant in the embedding of (W 1,2(Rn),‖ · ‖i ) into L4(Rn). It is easy to see that σi is
achieved at

v̂i (x) = σ−1
i

√
λi U

(√
λi x

)
,

5 The proof of this fact is not fully justified in [5] and requires additional arguments.



A. Ambrosetti, E. Colorado / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453–458 457
and one has σ 4
i = λ2

i

∫
U4(

√
λi x)dx = λ

2−n/2
i

∫
U4(x)dx. In particular, there holds

σ 2
j

σ 2
i

=
(

λj

λi

)1−n/4

.

Using this equation, the Hölder inequality and the fact that σ 4
i = µ2

i

∫
U4

i , we get

γ 2
i � inf

[ ‖ϕ‖2
j

(
∫

U4
i )1/2(

∫
ϕ4)1/2

]
�

µiσ
2
j

σ 2
i

= µi

(
λj

λi

)1−n/4

.

As for the upper bound, we take e.g. ϕ = U2. Then

γ 2
1 �

‖U2‖2
2∫

U2
1 U2

2

�
µ1µ2‖U2‖2

2

λ1λ2
∫

U2(
√

λ1x)U2(
√

λ2x)
.

If λ1 > λ2 (which implies that U(
√

λ1 x) � U(
√

λ2 x)), we get

γ 2
1 �

µ1µ2‖U2‖2
2

λ1λ2
∫

U4(
√

λ1 x)
= λ1µ1µ

2
2

∫
U4

2

λ2σ
4
1

= λ1µ1σ
4
2

λ2σ
4
1

= µ1

(
λ2

λ1

)1−n/2

.

Similarly, if λ1 � λ2 then one has γ 2
1 � µ1

λ2
λ1

. Same arguments lead to prove that γ 2
2 � max{µ2

λ1
λ2

,µ2 ( λ2
λ1

)1−n/2}.

3. A perturbation result

Motivated by [2], we consider the system (1) in one dimension, with g(u, v) = uv. For the sake of simplicity, we
will take below λi = µi = 1, i = 1,2. With this notation, the system becomes{−u′′ + u = u3 + βv,

−v′′ + v = v3 + βu.
(6)

Let Ûα(x) =
√

2α
cosh(

√
α x)

denote the even positive solution of −u′′ +αu = u3, u ∈ E := W 1,2(R). For all β � 0, (6) has,

in addition to the semi-trivial solutions (±Û1,0), (0,±Û1), two families of soliton like solutions, given by(
Û1−β, Û1−β

)
,
(−Û1−β, −Û1−β

)
, for 0 � β � 1 (symmetric states),(

Û1+β,−Û1+β

)
,
(−Û1+β, Û1+β

)
, for β � 0 (anti-symmetric states).

The following theorem shows that, for β small, near the anti-symmetric solitons we can find solutions with a quite
different profile.

Theorem 6. If β = ε > 0 is sufficiently small, then (6) has a solution (uε, vε) ∈ E × E such that uε ∼ Û1(x + ξε) +
Û1(x − ξε), vε ∼ −Û1(x), where ξε ∼ − log ε.

Remarks 7. (i) The first component of the solutions found above has two bumps. In the case of a single NLS equation,
the existence of solutions with more than one peak depends on the presence of a suitable potential depending on x.
It is a specific remarkable feature of NLS systems that multi-bump solutions exist in the autonomous case as well. Let
us also point out that they do not exist near symmetric states, but only near the anti-symmetric ones.

(ii) By using numerical methods, a bifurcation diagram is reported in [2], indicating that for β ∈ (0,1) there exists
a family of new solutions, bifurcating from the branch of the anti-symmetric states at β = 1. Theorem 6 provides
a rigorous proof of the existence result, for small values of the parameter β .

The proof of Theorem 6 is carried out by means of perturbation methods. Roughly, one considers the set

Z = {(
Û1(x + ξ) + Û1(x − ξ),−Û1(x)

)
: ξ ∈ R, |ξ | � 1

}
.

Such a Z is a manifold of pseudo-critical points of

Φε(u, v) = I (u) + I (v) − ε

∫
uv dx, where I (u) = 1

2

∫ (|u′|2 + u2)dx − 1

4

∫
u4 dx,
R R R
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in the sense that Φ ′
ε is small on Z , see [4, Section 2.4]. Looking for critical points in the form zξ + w, with zξ ∈ Z

and w ⊥ TzξZ , one first finds a unique w = wξ which solves the auxiliary equation on (TzξZ)⊥. According to [4,

Theorem 2.12] any critical point ξε of the reduced functional Φ̃ε(ξ) = Φε(zξ + wξ) gives rise to a critical point of Φε

and hence to a solution of (6). Carrying out this procedure, one shows that there exist ci > 0, i = 0,1,2, such that

Φ̃ε(ξ) = 2 + c0ε
2 − c1 e−2ξ + εc2ξ e−ξ + R(ε, ξ), (7)

where |R(ε, ξ)| � o(ε)o(e−2ξ ) + o(e−4ξ ), for ε small and |ξ | large, and the theorem follows.
It is easy to extend the preceding arguments to handle the PDE analog of (6). Here one works in W 1,2(Rn), with

n = 2,3. It is worth pointing out that now there exist several other multi-bump solutions. More precisely, if n = 2,
one can prove the existence of solutions with k peaks, for all k � 5, located on a circle of radius rε ∼ − log ε, in the
vertices of a regular polygon with k sides. If n = 3, the peaks are situated on a sphere with radius as above, in the
vertices of any platonic solid, with the exception of the dodecahedron. The reason why the regular polygons with 6 or
more sides, resp. the dodecahedron, are excluded is because, in order to obtain an expansion like (7), the side of the
polygons, resp. solids, must be smaller than the radius of the circumscribed circle, resp. sphere.
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