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Abstract

In this Note, we provide a complete description of the limiting spectral measure of the Generalised Inverse Gaussian (GIG)
random matrix model. The overall strategy relies on the large deviation theorem for the empirical measure of general continuous
Coulomb gas. This limit is given as the extremal measure of a weighted logarithmic energy problem which may be explicitly
solved here. Furthermore, we prove the almost sure convergence of the largest and smallest eigenvalues of the GIG model towards
respectively the right and left-endpoints of the extremal compact support. To cite this article: D. Féral, C. R. Acad. Sci. Paris,
Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La mesure spectrale limite du modèle de matrices aléatoires de la loi Gaussienne Inverse Généralisée. Dans cette Note,
nous explicitons la mesure spectrale limite du modèle de matrices aléatoires soumises à la loi Gaussienne Inverse Généralisée. La
stratégie sous-jacente repose sur un théorème de grandes déviations établi pour la mesure spectrale de certains gaz de Coulomb
plus généraux. Cette limite apparaît comme la mesure extrémale d’un problème d’énergie logarithmique avec poids qui peut être
complètement résolu ici. De plus, nous prouvons la convergence presque sûre de la plus grande (resp. petite) valeur propre vers le
bord droit (resp. gauche) du support compact extrémal. Pour citer cet article : D. Féral, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The Generalised Inverse Gaussian (GIG) random matrix model generalises the famous Wishart model (cf. [2]
and [4]) and is of interest in Statistics. It may be described as follows. Given an integer N � 1, we denote by H+

N(R)

the space of the N × N Hermitian positive definite matrices. For AN , BN in H+
N(R) and λN in R, a random matrix

XN of H+
N(R) is said to have a GIG distribution if its law is given by

µλN,AN ,BN
(dXN) = (detXN)λN−N

KN(AN,BN,λN)
exp

[−Tr
(
ANXN + BNX−1

N

)]
1H+

N(R)(XN)dXN (1)
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where det is the determinant, Tr the trace, dXN the Lebesgue measure on H+
N(R) and KN(AN,BN,λN) the finite nor-

malisation constant. For BN = 0 and λN > 0, this is the well-known Wishart distribution with covariance matrix AN

(see [1]). Denote by x1 � · · · � xN the N eigenvalues of XN . Assume AN = αNIN and BN = βNIN with αN , βN > 0
(IN is the identity matrix). By (1) and the Jacobian formula, the joint density of the eigenvalues on the Weyl chamber
E = {x ∈ R

N ; 0 < x1 < · · · < xN } may be shown (cf. [10]) to be given by the Coulomb gas representation

GIG(λN,αN,βN)(x) := 1

ZN

∣∣∆N(x)
∣∣2 exp

(
−N

N∑
i=1

VN(xi)

)
1E(dx) (2)

where ∆N(x) = ∏
i<j (xi − xj ) is the Vandermonde determinant, ZN the normalisation constant and

VN(x) =
(

1 − λN

N

)
lnx + αN

N
x + βN

Nx
. (3)

By symmetry under permutations, the joint density (2) may be extended to the whole of (R+∗)N . As

λN

N
→ λ ∈ R,

αN

N
→ α > 0,

βN

N
→ β > 0, when N → ∞, (4)

note that

VN(x) → V (x) = (1 − λ) lnx + αx + β

x
, uniformly on any compact subset of R

+∗. (5)

In this Note, we shall be interested in the limiting spectral distribution on the eigenvalues µ̂N = 1
N

∑N
i=1 δxi

as
the size N → ∞. We further investigate the extremal eigenvalues xmax := maxi xi and xmin := mini xi (we suppress
dependence upon N ). We restrict ourselves to β > 0. When β = 0, λ > 0 and α = 1, the model is the classical complex
Wishart Ensemble considered in [8] and [6].

Continuous Coulomb gases of type (2) with more general potentials VN and V have been investigated in the
literature (see [3,7,6] and references therein). In particular, in the work [6], a general framework including GIG model
has been developed for which a Large Deviation Principle (LDP) and the almost sure convergence for both µ̂N and
xmax have been established. In the LDP formulation, the limiting spectral measure µV is usually described as the
extremal measure of a weighted logarithmic energy problem. As the main conclusion here, we show how µV may be
explicitly described for the GIG, giving rise to precise limiting statements for both µ̂N and the extremal eigenvalues.
Below, M(R+∗) denotes the space of the probability measures on R

+∗ equipped with the classical Lévy distance.

Theorem 1. Under the GIG(λN,αN,βN) distribution, (µ̂N )N satisfies on M(R+∗) a LDP with speed N2 and good
rate function (GRF)

∀µ ∈ M
(
R

+∗), IV (µ) =
∫∫

R+∗×R+∗
log|x − y|−1 dµ(x)dµ(y) +

∫
R+∗

V (x)dµ(x) − FV (6)

where FV is a finite (explicit) constant. Moreover, (µ̂N ) converges almost surely (a.s.) to the deterministic extremal
probability µV which minimizes IV , which is compactly supported on R

+∗ and given by

dµV

dx
= 1

2π

√
(x − a)(b − x) ×

[
α

x
+ β√

ab x2

]
1[a,b](x) (7)

where 0 < a < b are solution of

1 − λ + α
√

ab − β
a + b

2ab
= 0 and 1 + λ + β√

ab
− α

a + b

2
= 0. (8)

The next theorem derived from Section 4 of [6] deals with the largest eigenvalue xmax.

Theorem 2. Under the GIG(λN,αN,βN), xmax converges a.s. to b and satisfies on R
+∗a LDP with speed N and GRF

I ∗
α,β,a,b(t) =




t∫
b

1

2x

(
α + β

x
√

ab

)√
(x − a)(x − b)dx if t � b,

(9)
+∞ otherwise.
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Some specific symmetry properties of the GIG model actually leads to an analogous conclusion for xmin.

Theorem 3. Under the GIG(λN,αN,βN), xmin tends a.s. to a, satisfies a LDP with speed N and GRF

I ∗∗
V (t) =

{
I ∗
β,α, 1

b
, 1
a

(t) if t � a,

+∞ otherwise.
(10)

Notice that with minor modifications, the results above also hold in the real setting. As already mentioned, general
versions of Theorems 1 and 2 have been obtained in [6]. In the next section, we outline the proof of the explicit
expression of µV , explain the rate function I ∗

α,β,a,b and justify Theorem 3.

2. Sketch of proofs

The existence and unicity of µV follow from the theory of ‘the energy problem’ developed in the book [11].
Since V in (5) is regular enough (see [6]), µV has a density ΦV and is compactly supported on R

+∗.
Let us first determine the compact support [a, b]. By Theorem IV.1.11 of [11], its edges a and b satisfy

1

π

b∫
a

V ′(x)√
(b − x)(x − a)

dx = 0 and
1

π

b∫
a

xV ′(x)√
(b − x)(x − a)

dx = 2. (11)

Since V ′(x) = 1−λ
x

+ α − β

x2 , to obtain (8), we shall compute several integrals and make use of some arguments of
complex analysis (cf. [9] and Section V of [5]). For example, we need to establish that

1

π

b∫
a

1

x2

1√
(x − a)(b − x)

dx = a + b

2ab
√

ab
. (12)

Our approach is first to define, for all z ∈ C \ [a, b], √
(z − a)(z − b) = exp{ 1

2 Log[(z − a)(z − b)]} where Log is the
principal determination of the logarithm. Let Kε,R = {z ∈ C: d(z, [a, b]) � ε, |z| � R} with ε,R > 0, and call γε,R

its boundary. By the Residue Theorem and the Cauchy formula,

−1

2iπ

∫
γε,R

1√
(z − a)(z − b)

dz

z2
= a + b

2ab
√

ab
(under 0 < ε < a and R > b + ε). (13)

Then, letting R → ∞ and ε → 0, one easily shows that the R.H.S. of (13) tends to that of (12).
From Theorem IV.3.1 of [11], the density ΦV = dµV

dx
is given by (where PV denotes the principal value)

ΦV (x) = 1

2π

√
(x − a)(b − x)PV

(
1

π

b∫
a

V ′(t)√
(t − a)(b − t)

dt

t − x

)
.

Once one has noticed that, for all a < x < b, 1
π

∫ b

a
1

t−x
dt√

(t−a)(b−t)
= 0 (this is a consequence of Theorem I.1.3 and

Example I.3.5 of [11]), (7) can be derived using again the Residue method.
To prove Theorem 2, observe first that the GIG model fulfils the assumptions of Section 4 of [6] since

g(x) =
b∫

a

log |x − t |−1ΦV (t)dt + 1

2
V (x) + 1

2

b∫
a

V (t)ΦV (t)dt

is a non-decreasing function on ]b,+∞[. Indeed, g′(x) = mV (x) + 1
2V ′(x) where mV (x) = ∫ b

a
1

t−x
ΦV (t)dt is the

Stieltjes transform of µV . It is not hard to show (once more using the Residue Theorem) that

∀x ∈ C \ [a, b], mV (x) = −1
V ′(x) + 1

(
α + β√

)√
(x − a)(x − b).
2 2x x ab
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This leads for all x > b to g′(x) = 1
2x

(α+ β

x
√

ab
)
√

(x − a)(x − b) which is non-negative. Now, the announced formula

for I ∗
α,β,a,b is a consequence of the fact (see [6]) that for all t � b, I ∗

α,β,a,b(t) = ∫ t

b
g′(x)dx.

Finally, Theorem 3 is deduced from Theorem 2 thanks to the following interesting property of the GIG.

Lemma 4. If XN has the GIG(λN,αN,βN) distribution, then X−1
N is of the GIG(−λN,βN,αN).

This lemma follows from (1) (see [10] or [2]) (or also from (2)). At last, one needs only notice that the associated
extremal support of the GIG(−λN,βN,αN) is [ 1

b
, 1

a
] if [a, b] is that of the GIG(λN,αN,βN).
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