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Abstract

We consider the parameter estimation problem for a Markov jump process sampled at periodic epochs with a constan
like the diffusion case where a closed form of the likelihood function is usually unavailable, we provide here an explicit exp
of the likelihood function of the sampled chain. Moreover under suitable ergodicity condition on the jump process, we esta
consistency and the asymptotic normality of the likelihood estimator as the observation period tends to infinity.To cite this article:
D. Dehay, J.-f. Yao, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’estimation d’un processus de sauts discretisé. Soit un processus de sauts markovien observé en des temps di
À l’aide d’une formule explicite de la vraisemblance de la chaîne observée, nous proposons une théorie asymptotique d
teur de vraisemblance.Pour citer cet article : D. Dehay, J.-f. Yao, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Consider a Markov jump processX = (Xt )t�0 with a countable state spaceE. We are given a Markov transitio
kernelp = {p(x, y), (x, y) ∈ E2} satisfyingp(x, x) = 0 for all x ∈ E, and an intensity functionλ( · ) defined onE.
The characteristic dataλ( · ) andp( · , · ) of the process are assumed to depend on a parameterθ ∈ Θ ⊂ R

s . The aim
of the Note is to estimate this parameterθ from regularly spaced observations of the process, that is from thesampled
chain Z = (Zn)n�0 := (Xnδ)n�0. The sampling step is usually known in practice, then without loss of generali
will assumeδ = 1.

The likelihood estimation theory based on a continuous time observation of a Markov jump processX = (Xt )t�0

is classical and well-known. On the other hand, estimation theory from discrete observations has been d
more recently. In particular the estimation for a discretely observed diffusion process has been subject to an
research in the last decade [9,1,3]. One of the difficulties here is that usually the likelihood function cannot be
in a closed form. Consequently the direct maximum likelihood estimation is not available.

E-mail addresses: dominique.dehay@uhb.fr (D. Dehay), jian-feng.yao@univ-rennes1.fr (J.-f. Yao).
1631-073X/$ – see front matter 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.12.025
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To the best of our knowledge, there are few results for a discretely observed Markov jump process. The p
estimation problem for a discretely observed birth process and a birth-and-death process was considered b
[7,8]. However, both situations are simpler as the maximum likelihood estimator is explicitly given by a formula
also that in the case of a birth-and-death process, the author assumed also the existence of some auxiliary s
addition of the sampled observations. For a general Markov jump process with finite state space, Bladt and
proposed in a recent work [2] two independent methods for estimating the intensity matrix (infinitesimal matr

In this Note we propose a different approach based on an explicit formula for the transition matrix of the s
chainZ assuming that the intensity functionλ( · ) is bounded above and away from 0. This makes the likelih
estimation feasible. From a numerical point of view, accurate approximations of the transition matrix can b
computed as the series converges exponentially fast.

Now we introduce that explicit formula for the transition matrix. LetQ be the intensity matrix (infinitesimal matrix
of the processX,

Q(θ;x, y) = −λ(θ;x)δx(y) + λ(θ;x)p(θ;x, y),

whereδx is the Dirac function atx. Assume that̃λ := supx∈E λ(θ;x) ∈ (0,∞) and define a new kernel

p̃(θ;x, y) :=
(

1− λ(θ;x)

λ̃

)
δx(y) + λ(θ;x)

λ̃
p(θ;x, y). (1)

Then using matrix exponential calculus, it is easy to see that we haveq = exp(Q) = e−λ̃ exp(λ̃I +Q) = e−λ̃ exp(λ̃p̃),
or explicitly

q(θ;x, y) = e−λ̃
∞∑

k=0

λ̃k

k! p̃k(θ;x, y), (x, y) ∈ E2, (2)

with p̃k thek-th power of the kernel̃p. It then becomes easy to compute the transition kernelq(θ;x, y) since in this
formula thep̃k(θ;x, y)’s are bounded and the series converges exponentially fast.

As the state space is unbounded, the likelihood estimation theory is not straightforward. Traditionally im
references in parametric estimation problem for Markov chains are Billingsley’s papers [4,5] where many
results, including the asymptotic normality as well as the limiting distributions of khi-square statistics are
However the consistency in the strict sense, i.e. convergence of the likelihood estimator to the true paramete
established there. Moreover, Condition 1.1 used in [4] followed Cramér’s analysis of the likelihood estimator
regularity conditions, e.g. existence of third-order partial derivatives, are typically much more than necessar
consistency. Another important reference is Dacunha-Castelle and Duflo’s book [6] (Chapter 4) where a detai
of the likelihood estimator was carried out. In particular the consistency problem was solved there by introd
suitable continuity condition (w.r.t. the parameters) and an identifiability condition. Our approach follows the m
developed in [6]. Although the results are quite standard, we have introduced several technical improveme
recent results from the stability theory of Markov chains.

2. Convergence of the likelihood estimator

The observation chainZ is a Markov chain with transition kernelq(θ;x, y). Let be the counting statistic
Nn(x, y) = ∑n

k=1 1(Zk−1,Zk)=(x,y). Therefore, conditionally toZ0 = X0 = z, the log-likelihood of(Z1, . . . ,Zn) and
the likelihood estimator are

Ln(θ) =
n∑

k=1

logq(θ;Zk−1,Zk) =
∑

x,y∈E

Nn(x, y) logq(θ;x, y), θ̂n := arg max
θ∈Θ

Ln(θ). (3)

Before starting a mathematical analysis of this estimator, let us indicate how to compute it in practice. F
may use some a priori bounds for the parameters or a preliminary estimator to set up the compact parameterΘ .
Next, we can use standard gradient descent method (from some numerical optimization toolbox) to findθ̂n with the
aid of Eqs. (2) and (3).

The true value of the parameter is denoted byα. As for the recurrence of the Markov chain(Xn)n�0, we will
assume throughout the Note the following condition



D. Dehay, J.-f. Yao / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 341–344 343

ith the

l at
ons like
sume

r. So

ntia-
[R]: (i) For some a � 1, under the true model α, the chain (Xn) has an unique invariant probability measure µα

having a moment of order a, i.e.
∑

x∈E |x|aµα(x) < ∞.
(ii) For any µα-integrable function φ :E → R, the following Strong law of large numbers (SLLN). Holds we

have for any initial condition X0 = x, 1
n

∑n
i=1 φ(Xi)

a.s.−→ ∑
x∈E φ(x)µα(x).

It is worth noticing that a standard way to ensure such type of recurrence is to use a drift condition w
Lyapunov functionV (x) = |x|a , together with some continuity of the transition kernel.

2.1. Strong consistency

First call acontinuity modulus any increasing functionG defined on[0,∞) satisfying limθ→0 G(θ) = G(0) = 0.
Throughout the articleC will denote a generic constant.

Assumptions [S]:

(1) The parameter spaceΘ is a compact subset ofR
s .

(2) For allθ , p(θ; ·) is a irreducible kernel andλ(θ; ·) a positive function.
(3) (a) | logq(α;x, y)| � C(1+ |x|a/2 + |y|a/2).

(b) There exists a continuity modulusG such that for all(x, y) ∈ E2 and(θ, θ ′) ∈ Θ2,∣∣logq(θ;x, y) − logq(θ ′;x, y)
∣∣ � G

(|θ − θ ′|)(1+ |x|a/2 + |y|a/2).
Condition [S]-(1) is standard. Condition [S]-(2) is also basic; it implies in particular thatq(θ;x, y) > 0 for every

(θ, x, y). Conditions [S]-(3) are continuity assumptions ong = logq together with its boundedness by a polynomia
infinity. Furthermore, these properties together with the ergodicity assumption (2) guarantee a SLLN for functi
|g| or |g|2. With respect to Condition [S]-(3.b), it is worth noticing that in Theorem 4.4.21 in [6] the authors as
that the family{θ �→ g(θ; , x, y)} indexed by(x, y) ∈ E2 is equicontinuous to get the consistency of the estimato
Condition [S]-(3.b) is much weaker when the state spaceE is unbounded.

To ensure the fact that the true valueα is the unique global maximum of the limiting function ofLn, we need the
following identifiability condition

[D]: for anyθ �= α, µα{x: q(θ;x, y) �= q(α;x, y), for somey ∈ E} > 0.

Theorem 2.1. Assume that Conditions [R], [S] and [D] hold. Then the likelihood parameter estimator θ̂n is strongly
consistent, i.e. for all x ∈ E, Pα,x -almost surely, θ̂n → α.

2.2. Asymptotic normality

For asymptotic normality ofθ̂n, we typically need some additional conditions on second order differe
bility of the process(Ln). In the following partial derivatives of a functionφ(θ) are denotedDiφ := ∂φ/∂θi ,
D2

ij φ := ∂2φ/(∂θi∂θj ).

Assumption [N]: Assume thatα is an interior point ofΘ , and there is a neighbourhoodV of α where for any
(x, y) ∈ E2, the functionθ �→ g(θ; x, y) is twice continuously differentiable such that for alli, j = 1, . . . , s we
have

(1) (a) |Di logq(α; x, y)| ∨ |D2
ij logq(α; x, y)| � C(1+ |x|a/2 + |y|a/2) ;

(b) there exists a continuity modulusσij such that forθ ∈ V , (x, y) ∈ E2

∣∣D2
ij logq(θ; x, y) − D2

ij logq(α; x, y)
∣∣ � σij

(|θ − α|)(1+ |x|a/2 + |y|a/2);
(2) for all x ∈ E, the family of transition kernels{q(θ;x, ·); θ ∈ V } is regular at α in the sense that

(a)
∑

y∈E[Di logq(α;x, y)]q(α, x, y) = 0.

(b) Iij (x;α) := ∑
y∈E[Di logq(α; x, y)][Dj logq(α; x, y)]q(α;x, y) = −∑

y∈E[D2
ij logq(α; x, y)]q(α;x, y).
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The assumption [N]-(2) is a natural extension of classical regularity conditions for i.i.d. samples to the
Markov chain case (see e.g. [6], §4.4). The matrixI (α;x) := [Iij (α;x)] is the Fisher information matrix atα asso-
ciated to the family of distributions{q(θ;x, ·): θ ∈ V }. Moreover, we will see below that under this assumption
matrix I (α) := ∑

x∈E I (x;α)µα(x), is well-defined and usually called the (asymptotic) Fisher information matrix of
the Markov chain(Xn).

Theorem 2.2. Assume that Conditions [R], [S] and [N] hold and the matrix I (α) is invertible. Then for any weakly
consistent estimator θ̂n,

√
n (θ̂n − α) converges in distribution to the zero-mean s-dimensional Gaussian distribution

with covariance matrix I (α)−1.
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