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Abstract

We consider the parameter estimation problem for a Markov jump process sampled at periodic epochs with a constant step. Un
like the diffusion case where a closed form of the likelihood function is usually unavailable, we provide here an explicit expression
of the likelihood function of the sampled chain. Moreover under suitable ergodicity condition on the jump process, we establish the
consistency and the asymptotic normality of the likelihood estimator as the observation period tends toTiofiiyhis article:
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Résumé
Sur I'estimation d'un processus de sauts discretisé. Soit un processus de sauts markovien observé en des temps discrets.
A l'aide d’une formule explicite de la vraisemblance de la chaine observée, nous proposons une théorie asymptotique de I'estima
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1. Introduction

Consider a Markov jump process= (X;);>o With a countable state spa¢e We are given a Markov transition
kernelp = {p(x, y), (x,y) € E?} satisfyingp(x, x) = 0 for all x € E, and an intensity function(-) defined onkE.
The characteristic data(-) and p(-, -) of the process are assumed to depend on a parathetér C RS. The aim
of the Note is to estimate this paramederom regularly spaced observations of the process, that is frosathgled
chain Z = (Z,)n>0 := (Xas)n>0. The sampling step is usually known in practice, then without loss of generality we
will assumes = 1.

The likelihood estimation theory based on a continuous time observation of a Markov jump pXoeess;); >0
is classical and well-known. On the other hand, estimation theory from discrete observations has been develope
more recently. In particular the estimation for a discretely observed diffusion process has been subject to an intensive
research in the last decade [9,1,3]. One of the difficulties here is that usually the likelihood function cannot be obtained
in a closed form. Consequently the direct maximum likelihood estimation is not available.
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To the best of our knowledge, there are few results for a discretely observed Markov jump process. The paramet
estimation problem for a discretely observed birth process and a birth-and-death process was considered by Keidil
[7,8]. However, both situations are simpler as the maximum likelihood estimator is explicitly given by a formula. Note
also that in the case of a birth-and-death process, the author assumed also the existence of some auxiliary statistic:
addition of the sampled observations. For a general Markov jump process with finite state space, Bladt and Sgrens
proposed in a recent work [2] two independent methods for estimating the intensity matrix (infinitesimal matrix).

In this Note we propose a different approach based on an explicit formula for the transition matrix of the sampled
chain Z assuming that the intensity functior(-) is bounded above and away from 0. This makes the likelihood
estimation feasible. From a numerical point of view, accurate approximations of the transition matrix can be easily
computed as the series converges exponentially fast.

Now we introduce that explicit formula for the transition matrix. ibe the intensity matrix (infinitesimal matrix)
of the proces«,

0(@0;x,y) =—A(0; x)éx(y) + 1(6; x) p(0; x, y),
wheres, is the Dirac function at. Assume thak := sup,cg A(6; x) € (0, 00) and define a new kernel

A O; NCE
p@;x,y) = (l— (;\x)>8x(y)+ (xx)p(G;x,yl 1)

Then using matrix exponential calculus, it is easy to see that weqavexp(Q) = et exp(il + Q) = et exp(ip),
or explicitly
.20 5k
qO:x,y) =€) 5 POy, () eE? (2)
k=0

with p* the k-th power of the kernep. It then becomes easy to compute the transition keyt#lx, y) since in this
formula thepX (9; x, y)’s are bounded and the series converges exponentially fast.

As the state space is unbounded, the likelihood estimation theory is not straightforward. Traditionally important
references in parametric estimation problem for Markov chains are Billingsley’s papers [4,5] where many precise
results, including the asymptotic normality as well as the limiting distributions of khi-square statistics are given.
However the consistency in the strict sense, i.e. convergence of the likelihood estimator to the true parameter, was r
established there. Moreover, Condition 1.1 used in [4] followed Cramér’s analysis of the likelihood estimator. These
regularity conditions, e.g. existence of third-order partial derivatives, are typically much more than necessary for the
consistency. Another important reference is Dacunha-Castelle and Duflo’s book [6] (Chapter 4) where a detailed stuc
of the likelihood estimator was carried out. In particular the consistency problem was solved there by introducing &
suitable continuity condition (w.r.t. the parameters) and an identifiability condition. Our approach follows the method
developed in [6]. Although the results are quite standard, we have introduced several technical improvements usir
recent results from the stability theory of Markov chains.

2. Convergence of thelikelihood estimator

The observation chaiZ is a Markov chain with transition kernel(9; x, y). Let be the counting statistics
Ny(x,y) = ;_11(z_1.7z)=(x,y)- Therefore, conditionally t&o = Xo = z, the log-likelihood of(Z, ..., Z,) and
the likelihood estimator are

La(0)=)_100q(6: Zi-1.Z0 = ) Na(x.3)10gq(®:x.y). b, := argmaL.,(©). (3)
k=1 x,yeE

Before starting a mathematical analysis of this estimator, let us indicate how to compute it in practice. First, we
may use some a priori bounds for the parameters or a preliminary estimator to set up the compact paraméter space
Next, we can use standard gradient descent method (from some numerical optimization toolboxy,tanithcthe
aid of Egs. (2) and (3).

The true value of the parameter is denotedobyAs for the recurrence of the Markov chaiX,),>o0, we will
assume throughout the Note the following condition
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[R]: (i) For some a > 1, under the true model «, the chain (X,) has an unique invariant probability measure
having a moment of order a,i.e. )", g [x]* na (x) < 00.
(ii) For any ue-integrable function ¢ : E — R, the following Strong law of large numbers (SLLN). Holds we

have for any initial condition Xo=x, 2 3°7_1 ¢ (X)) <5 3, g (1) e ().

It is worth noticing that a standard way to ensure such type of recurrence is to use a drift condition with the
Lyapunov functionV (x) = |x|¢, together with some continuity of the transition kernel.

2.1. Strong consistency

First call acontinuity modulus any increasing functior defined on0, co) satisfying limy_.o G(#) = G(0) = 0.
Throughout the articl€ will denote a generic constant.

Assumptions §:

(1) The parameter spacg is a compact subset & .
(2) Forallg, p(9;-) is airreducible kernel ang(@; -) a positive function.
(3) (@) llogq(a; x, y)| < C(L+ |x[/2 + |y|*/?).
(b) There exists a continuity modul@such that for al(x, y) € E2 and (9, ') € ©2,

logq(@; x, y) —logq©@’; x, y)| < G(16 — 0') (1 + [x|/% + |y|*/?).

Condition [S]-(1) is standard. Condition [S]-(2) is also basic; it implies in particularg¢te@tx, y) > 0 for every
(6, x, y). Conditions [S]-(3) are continuity assumptionsg#: logg together with its boundedness by a polynomial at
infinity. Furthermore, these properties together with the ergodicity assumption (2) guarantee a SLLN for functions like
lg| or |g|2. With respect to Condition [S]-(3.b), it is worth noticing that in Theorem 4.4.21 in [6] the authors assume
that the family{d — g(@; , x, y)} indexed by(x, y) € E2 is equicontinuous to get the consistency of the estimator. So
Condition [S]-(3.b) is much weaker when the state spade unbounded.

To ensure the fact that the true valués the unique global maximum of the limiting function bf;, we need the
following identifiability condition

[D]: for any6 # o, puef{x: q(0; x,y) #q(a; x,y), for somey € E} > 0.

Theorem 2.1. Assume that Conditions [R], [S] and [D] hold. Then the likelihood parameter estimator 6, is strongly
consistent, i.e. for all x € E, P, ,-almost surely, 6, — «.

2.2. Asymptotic nhormality

For asymptotic normality of),, we typically need some additional conditions on second order differentia-
bility of the process(L,). In the following partial derivatives of a function(0) are denotedD;¢ := d¢/06;,
Dl?j(p = 92¢/(36;30;).

Assumption N]: Assume thatx is an interior point of®, and there is a neighbourhodd of o where for any
(x,y) € E2, the functiond — g(6; x,y) is twice continuously differentiable such that for allj = 1,...,s we
have

(1) (@) IDilogg(e; x,y)|VIDZlogq(e; x, y)| < C(L+ |x[4/2+|y[*/?) ;
(b) there exists a continuity modulag; such thatfol e V, (x, y) € E?
|D7109q(0; x,y) — Dilogq(e; x,y)| <oij(10 — al)(1+ [x|*%+ y]*/?);
(2) forallx € E, the family of transition kernel&; (9; x, -); 6 € V}isregular at « in the sense that
(@ > yeplDilogg(a; x, y)1g (e, x,y) =0.
(b) Lij(x; @) := 3, [ Dilogg(a; x, MIID;logq(e; x, Mg (@; x,y) = =3 [ D7 10gq (a; x, y)lg(@; x, y).
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The assumption [N]-(2) is a natural extension of classical regularity conditions for i.i.d. samples to the present
Markov chain case (see e.qg. [6], 84.4). The malrix; x) := [[;; («; x)] is the Fisher information matrix at asso-
ciated to the family of distribution&; (6; x, -): 6 € V}. Moreover, we will see below that under this assumption the
matrix I (o) := Y .5 I (x; @) e (x), is well-defined and usually called thasymptotic) Fisher information matrix of
the Markov chain(Xx,).

Theorem 2.2. Assume that Conditions [R], [S] and [N] hold and the matrix / (@) is invertible. Then for any weakly
consistent estimator 6,,, /n (9,, — o) convergesin distribution to the zero-mean s-dimensional Gaussian distribution
with covariance matrix / ((x)
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