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Abstract

We prove that the coefficients of the so-called conjugation equation for conjugation spaces in the sense of Hausman
Puppe are completely determined by Steenrod squares. This generalises a result of V.A. Krasnov for certain complex
varieties. It also leads to a generalisation of a formula given by Borel and Haefliger, thereby largely answering an old qu
theirs in the affirmative.To cite this article: M. Franz, V. Puppe, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Carrés de Steenrod dans les espaces avec conjugaison. On démontre que les coefficients de l’équation dite « de conjugais
pour les espaces avec conjugaison au sens de Hausmann–Holm–Puppe, sont complètement déterminés par les carrés
Ceci généralise un résultat de V. A. Krasnov sur certaines variétés algébriques complexes, ainsi qu’une formule de Borel–
donnant ainsi une réponse positive à une question de ces deux derniers auteurs.Pour citer cet article : M. Franz, V. Puppe, C. R.
Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Statement of the results

Let X be a topological space with an involutionτ . We look atX as a space with an action of the groupG = {1, τ }.
We take cohomology with coefficients inF2 and consider the restriction mapr :H ∗(X) → H ∗(Xτ ), its equivariant
counterpartrG :H ∗

G(X) → H ∗
G(Xτ ) = H ∗(Xτ )⊗H ∗(BG) and the canonical projectionp :H ∗

G(X) → H ∗(X). Recall
thatH ∗(BG) = H ∗(RP∞) = F2[u] with deg(u) = 1.

According to Hausmann–Holm–Puppe [2],(X, τ) is called aconjugation space if H odd(X) = 0 and if there exists
a sectionσ :H ∗(X) → H ∗

G(X) of p and a degree-halving isomorphismκ :H 2∗(X) → H ∗(Xτ ) with the following
property: for everyx ∈ H 2n(X), n ∈ N, there exists elementsy1, . . . , yn ∈ H ∗(Xτ ) such that the so-calledconjugation
equation holds:

rG
(
σ(x)

) = κ(x)un + y1u
n−1 + · · · + yn−1u + yn. (1)
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A priori, σ andκ are only assumed to be additive, but the conjugation equation implies that they are in fact
plicative and unique. There are many examples of conjugation spaces, including flag manifolds, co-adjoint
compact Lie groups and (compact) toric manifolds, see [2].

For the conjugation spaceCPk , k ≤ ∞, Hausmann–Holm–Puppe prove the formularG(σ (vn)) = (wu + w2)n,
where v ∈ H 2(CPk) and w ∈ H 1(RPk) denote the generators [2, Example 3.7]. In other words,rG(σ (vn)) =
(wu + Sq1(w))n. The following result generalises this to an arbitrary conjugation spaceX.

Theorem 1.1. For every x ∈ H 2n(X), n ∈ N, one has

rG
(
σ(x)

) =
n∑

i=0

Sqi
(
κ(x)

)
un−i =: SQ

(
κ(x)

)
.

Corollary 1.2. For every x ∈ H ∗(X), one has

r(x) = κ(x)2.

We also show that the isomorphismκ commutes with total Steenrod squares.

Theorem 1.3. For every x ∈ H ∗(X) one has

κ
(
Sq(x)

) = Sq
(
κ(x)

)
.

Note that the odd Steenrod squares ofx vanish sinceH ∗(X) is concentrated in even degrees. Hence, the a
identity is equivalent to

κ
(
Sq2k(x)

) = Sqk
(
κ(x)

)
for all k ∈ N. (2)

2. Proofs

We denote the Steenrod algebra for the prime 2 byA.

Lemma 2.1. For every n there exist universal elements a0, . . . , an, b ∈ A such that for every conjugation space X and
every x ∈ H 2n(X) one has

rG
(
σ(x)

) =
n∑

i=0

ai

(
κ(x)

)
un−i and κ

(
Sq(x)

) = b
(
κ(x)

)
.

Moreover, a0 = 1 and a1 = Sq1.

Proof. Sinceκ is bijective, one can define, for everyX, functionsai, b :H ∗(X) → H ∗(Xτ ) such that the abov
identities hold. We show that they are (or, more precisely, come from) Steenrod squares, using that the re
maprG commutes with all Steenrod squares. We writeκ(x) = z.

We start by proving the claim about theai by induction oni, beginning ata0(z) = z. If i > 0 is even, we apply
Sq2k , wherek � i/2 will be chosen later. By the Leray–Hirsch theorem, we can write

Sq2k
(
σ(x)

) =
k∑

l=−n

σ (xl) u2(k−l) (3)

for somexl ∈ H 2(n+l)(X). Write zl = κ(xl). The restrictionrG(σ (xl)u
2(k−l)) has leading termzlu

n+2k−l , while,
by (1) and the Cartan formula, the leading power ofu in Sq2k(rG(σ (x))) is at mostun+2k . Hence, the summatio
in (3) is in fact only over 0� l � k.

We first compare coefficients ofun+2k−l in rG(Sq2k(σ (x))) = Sq2k(rG(σ (x))). Using Eq. (3) and the formul
[5, Lemma 2.4]

Sqj
(
ui

) =
(

i
)

ui+j ,

j
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n

we get for 0� l � k

zl =
l∑

j=0

(
n − l + j

2k − j

)
Sqj

(
al−j (z)

) +
l∑

j=1

aj (zl−j ), (4)

in particular

z0 =
(

n

2k

)
z.

Sincel < i, this inductively showszl = bl(z) for somebl ∈A. Comparing coefficients ofun+2k−i then gives

k∑
l=0

ai−l(zl) =
(

n

2k

)
ai(z) +

k∑
l=1

ai−l

(
bl(z)

) =
(

n − i

2k

)
ai(z) +

2k∑
j=1

(
n − i + j

2k − j

)
Sqj

(
ai−j (z)

)
. (5)

Now suppose thatk � i/2 is such that(
n

2k

)
�=

(
n − i

2k

)
.

For instance, this is true if 2k is the largest power of 2 dividingi. (Recall that a binomial coefficient mod 2 is t
product of the binomial coefficients taken for each pair of binary digits, cf. [5, Lemma I.2.6].) Then Eq. (5) c
solved forai(z) and shows thatai(z) can be expressed in terms of repeated Steenrod squares ofz.

For oddi, a similar (but simpler) reasoning based on commutativity with respect to Sq1 givesai(z) = Sq1(ai−1(z)),
in particulara1(z) = Sq1(z).

Now that allai(z) are known, we apply Sq2k for any k. Using the same notation as above, we have Sq2k(x) =
p(Sq2k(σ (x))) = xk . Comparing coefficients as before gives a formula forbl(z) similar to Eq. (4), but where th
summation indexj starts atl − n if l > n. Still, the equations can be recursively solved forzl . Hence,

κ
(
Sq(x)

) = κ(x0) + · · · + κ(xn) = b0(z) + · · · + bn(z) = b(z). �
In principle, the preceding proof could be used to determine the coefficients of the conjugation equation com

(as well as those of Sqk(σ (x)) for anyk). We will take a less tedious approach which relies on the fact that sui
products of infinite-dimensional real projective space can “detect” Steenrod squares, cf. [5, Corollary I.3.3].

Fact 2.2. The restricted evaluation map A�n → H ∗((RP∞)n), a �→ a(w × · · · × w) is injective for any n ∈ N.

Proof of Theorem 1.1. We want to showrG(σ (x)) = SQ(κ(x)) for all cohomology classes of all conjugation spac
By Lemma 2.1 and Fact 2.2, it suffices to do so forX = (CP∞)n (which is a conjugation space by [2, Proposition 4.
and x, the n-fold cross product of the generatorv becauseXτ = (RP∞)n and κ(x) = w × · · · × w in this case.
For n = 1 the identity is true since we already knowa1. The general case reduces to the casen = 1 because of th
multiplicativity of the mapsκ , σ , rG and SQ: writingvi ∈ H 2(X) for the pull-back ofv induced by the projectio
X → CP∞ onto thei-th factor, we get

rG
(
σ(x)

) = rG
(
σ(v × · · · × v)

) = rG
(
σ(v1 · · ·vn)

) = rG
(
σ(v1)

) · · · rG
(
σ(vn)

)
= SQ

(
κ(v1)

) · · ·SQ
(
κ(vn)

) = SQ
(
κ(v1 · · ·vn)

) = SQ
(
κ(x)

)
. �

Proof of Corollary 1.2. We have forx ∈ H 2n(X)

r(x) = r
(
p
(
σ(x)

)) = p
(
rG

(
σ(x)

)) = p
(
Sqn

(
κ(x)

)) = κ(x)2. �
Proof of Theorem 1.3. As in the proof of Theorem 1.1, it suffices to show the claimed identity forX = (CP∞)n and
x = v × · · · × v. Again, the general case can be reduced ton = 1, where we find

κ
(
Sq(v)

) = κ
(
v + v2) = κ(v) + κ(v)2 = Sq

(
κ(v)

)
. �
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3. Remarks

Let X be a non-singular complex projective variety defined over the reals such that its real locusXτ is non-empty.
In what follows, all algebraic cycles inX are understood to be defined over the reals. Borel and Haefliger
shown that ifH∗(X) andH∗(Xτ ) are generated by algebraic cycles, then the restrictionλ of cycles inX to their real
locus induces a degree-halving isomorphismH2∗(X) → H∗(Xτ ) respecting intersection products [1, §5.15]. Th
also show that ifH ∗(Xτ ) is generated by algebraic cycles andx ∈ H ∗(X) is Poincaré dual to a linear combinati
of non-singular subvarieties, then the identity in Theorem 1.3 holds, and they ask whether it holds more g
[1, §5.17].

Krasnov has proved that for a varietyX as above, Theorem 1.1 holds for cohomology classes Poincaré d
algebraic cycles, whereκ is the Poincaré transpose ofλ andσ the canonical section [3, Theorem 4.2]. This impl
that if H∗(X) is generated by algebraic cycles, then so isH∗(Xτ ) [4, Theorem 0.1]. Moreover,X is a conjugation
spaces in the sense of [2].

In a topological framework van Hamel has recently shown that certain topological manifolds with involutio
conjugation spaces [6, Theorem]. The necessary assumptions are formulated in terms of topological cycles.

The following simple example shows that in general the existence of a degree-halving multiplicative i
phismκ :H ∗(X) → H ∗(Xτ ) by itself does not imply that(X, τ) is a conjugation space.

Example 1. Let X = S2×S4 be equipped with the componentwise involutionτ which is the identity forS2 and forS4

has fixed point setS1. SoXτ = S2 × S1. Clearly there is a degree-halving multiplicative isomorphismκ :H ∗(X) →
H ∗(Xτ ). It is easy to check there is also a multiplicative sectionσ :H ∗(X) → H ∗

G(X). But (X, τ) is not a conjugation
space: the restriction map

rG :H ∗
G

(
S2 × S4) ∼= H ∗(S2 × S4) ⊗ F2[u] → H ∗(S2 × S1) ⊗ F2[u]

is given bys2 ⊗ 1 �→ s2 ⊗ 1 ands4 ⊗ 1 �→ s1 ⊗ u3, wheresn ∈ Hn(Sn) denotes the generator. Hence the conjuga
equation does not hold. Of course,S2 × S4 with the different componentwise involutioñτ which hasS1 ⊂ S2 and
S2 ⊂ S4 as fixed point sets (and henceXτ̃ = S1 × S2 ∼= Xτ ) is a conjugation space.
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