

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 329-332

http://france.elsevier.com/direct/CRASS1/

Géométrie algébrique

Résolutions de singularités non-abéliennes en dimension trois

Sophie Térouanne

Université Grenoble 1, institut Fourier, BP 74, 38402 Saint Martin d'Hères, France

Reçu le 9 juillet 2004 ; accepté après révision le 16 novembre 2005

Disponible sur Internet le 18 janvier 2006

Présenté par Jean-Pierre Demailly

Résumé

Soit *E* une courbe elliptique, R un système de racines réel en dimension trois, et *W* le groupe de Weyl associé. Ce groupe fini agit naturellement sur $E \otimes Q(R)$ et le quotient est un espace projectif avec poids. Soit $W_+ = W \cap SL_3(\mathbb{C})$. Le quotient $E \otimes Q(R)/W_+$ admet deux résolutions crépantes naturelles. L'une est le résultat d'un processus de désingularisation dû à Jung, et l'autre est le schéma de Hilbert équivariant. Pour les comparer, nous calculons les fibres de ces résolutions au dessus de chaque point singulier. Nous exhibons un phénomène de correspondance de McKay lors de la résolution par le schéma de Hilbert, et une nouvelle famille de fibrés sur *E* indéxée par le W_+ -schéma de Hilbert. *Pour citer cet article : S. Térouanne, C. R. Acad. Sci. Paris, Ser. I 342* (2006).

© 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

Resolution of non-Abelian three-dimensional singularities. Let *E* be an elliptic curve and R be a real three dimensional root system. Let *W* be the Weyl group associated to R. Denote $W_+ = W \cap SL_3(\mathbb{C})$. The quotient $E \otimes Q(R)/W_+$ admits two natural crepant resolutions. One is the result of a Jung process of desingularization of singularities, the other the equivariant Hilbert scheme. To compare these resolutions, we calculate the fibres over any singular point in both cases. We exhibit a McKay correspondence phenomenon for the Hilbert scheme resolution and construct a new family of vector bundles on *E* parametrized by the W_+ -Hilbert scheme. *To cite this article: S. Térouanne, C. R. Acad. Sci. Paris, Ser. I 342 (2006).* © 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

1. Situation

Soit R un système de racines réel de dimension *n*, et Q(R) le réseau engendré par R. Le groupe de Weyl W = W(R) agit naturellement sur $A = E \otimes Q(R)$, et d'après un théorème de Looijenga, le quotient est un espace projectif avec poids [1]. Soit $W_+ = W \cap SL_n(\mathbb{C})$. La variété quotient A/W_+ est singulière, et il s'agit d'un revêtement double ramifié de $A/W = \mathbb{P}(a_1, \ldots, a_n)$.

Dans le cas de la dimension trois, Bertin et Markushevich ont démontré que l'on peut résoudre les singularités de A/W_+ par une variété de Calabi–Yau grâce à la méthode de Jung [2]. Par ailleurs, d'après le théorème de Bridgeland,

1631-073X/\$ – see front matter © 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés. doi:10.1016/j.crma.2005.12.010

Adresse e-mail: Sophie.Terouanne@ujf-grenoble.fr (S. Térouanne).

R	W_+	Anti-invariant	Equation du lieu de branchement	Graphe dual de la fibre dans la résolution par Jung
$ \begin{array}{c} A_1 \times A_1 \times A_1 \\ A_1 \times A_2 \end{array} $	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $\mathfrak{S}_3 = \mathbb{D}_3$	$xyz x(y^3 - z^3)$	$uvw u(w^2 - 4v^3)$	•• ••
$A_1 \times B_2$	\mathbb{D}_4	$xyz(y^2 - z^2)$	$uw(v^2-4w)$	
$A_1 \times G_2$	\mathbb{D}_6	$x(y^6 - z^6)$	$u(w^2-4v^6)$	
<i>A</i> ₃	\mathfrak{A}_4	$(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)$	$f_{A_3}(u,v,w)$	
<i>B</i> ₃	\mathfrak{S}_4	Δ_{B_3}	$f_{B_3}(u,v,w)$	••

Tableau 1 Paramètres pour le processus de Jung

King et Reid, le W_+ -schéma de Hilbert de A résout également ces singularités de façon crépante [3]. Localement, la situation est celle de la singularité à l'origine du quotient $\mathbb{A}^3/W(\mathbf{R}')$ où \mathbf{R}' est un sous système de racines de \mathbf{R} .

Dans les Sections 2 et 3, on étudie la situation locale en dimension trois. On y compare ces deux résolutions en décrivant les fibres au dessus de la singularité locale $(\mathbb{A}^3/W(\mathbb{R}), 0)$. Dans le paragraphe 4, on démontre que la famille de fibrés sur *E* indexée par le *W*₊-schéma de Hilbert de *A* n'est pas l'image réciproque de la famille universelle de Friedman, Morgan et Witten.

2. Résolution par la méthode de Jung

Théorème 2.1 [6]. Soit R un système de racines de dimension trois, et $W_+ = W(R) \cap SL_3(\mathbb{C})$. Le processus de Jung permet de résoudre la singularité à l'origine de $\mathbb{A} \otimes Q(R)/W_+$ de façon crépante. Le Tableau 1 récapitule l'équation du lieu de branchement et la configuration de la fibre au dessus de l'origine.

Dans le Tableau 1 $f_{A_3}(u, v, w) = u^2 v^2 - 4u^3 v^2 - 4w^3 + 18uv^2 w - 27v^4$, $f_{B_3}(u, v, w) = w(u^2 v^2 - 4u^3 w - 4v^3 + 18uvw - 27w^2)$, et $\Delta_{B_3} = xyz(x^2y^2(x^2 - y^2) + x^2z^2(z^2 - x^2) + y^2z^2(y^2 - z^2))$.

On remarque que dans le cas $A_1 \times B_2$, la configuration de la fibre dépend de l'ordre choisi dans les éclatements successifs des composantes du lieu singulier de B.

3. Résolution par le schéma de Hilbert W₊-équivariant

Déterminer la fibre au-dessus de l'origine du $W_+(\mathbb{R})$ -schéma de Hilbert de \mathbb{A}^3 revient à déterminer la structure de l'ensemble des idéaux $I \subset \mathbb{C}[x, y, z]$ tels que $\mathbb{C}[x, y, z]/I$ soit la représentation régulière de $W_+(\mathbb{R})$. Soit I_{W_+} l'idéal engendré par les polynômes non-constants de la sous-algèbre des polynômes invariants par W_+ , et $S_{W_+} = \mathbb{C}[x, y, z]/I_{W_+}$ l'algèbre coinvariante de $\mathbb{C}[x, y, z]$. Alors l'ensemble des idéaux de $\mathbb{C}[x, y, z]$ définissant une W_+ -grappe de \mathbb{A}^3 est en correspondance biunivoque avec l'ensemble des idéaux de S_{W_+} définissant une W_+ -grappe de Spec (S_{W_+}) . L'algèbre S_{W_+} étant de dimension finie égale à Card(W) - 1, on peut calculer la fibre au dessus de l'origine cas par cas.

Exemple. R = B_3 . L'idéal I_{W_+} est engendré par les polynômes $f_2 = x^2 + y^2 + z^2$, $f_4 = x^2y^2 + x^2y^2 + y^2z^2$, $f_6 = x^2y^2z^2$ et $\Delta = xyz(x^2y^2(x^2 - y^2) + x^2z^2(z^2 - x^2) + y^2z^2(y^2 - z^2))$. L'algèbre S_{W_+} est de dimension 47 et W_+ admet une représentation irréductible non triviale de dimension un ε , une de dimension deux θ , et deux de dimension trois ψ et $\varepsilon\psi$. On décompose l'algèbre graduée S_{W_+} en représentations irréductibles, et on choisit une base $B_{\rho}[i]$ pour chaque exemplaire de la représentation ρ en degré *i*. Par exemple, notons

$$\begin{split} B_{\varepsilon}[3] &= \{\bar{x}\bar{y}\bar{z}\}, \quad B_{\theta}[4] = \{\bar{y}^{4}, \bar{z}^{4}\}, \quad B_{\psi}[4] = \{\bar{x}^{2}\bar{y}\bar{z}, \bar{x}\bar{y}^{2}\bar{z}, \bar{x}\bar{y}\bar{z}^{2}\}, \\ B_{\varepsilon\psi}[4] &= \{\bar{y}\bar{z}(\bar{y}^{2} - \bar{z}^{2}), \bar{x}\bar{z}(\bar{z}^{2} - \bar{x}^{2}), \bar{x}\bar{y}(\bar{x}^{2} - \bar{y}^{2})\}, \quad B_{\varepsilon\psi}[5] = \{\bar{x}^{5}, \bar{y}^{5}, \bar{z}^{5}\}, \\ B_{\theta}[5] &= \{\bar{x}\bar{y}\bar{z}(\bar{z}^{2} - \bar{x}^{2}), \bar{x}\bar{y}\bar{z}(\bar{x}^{2} - \bar{y}^{2})\}, \quad B_{\psi}[5] = \{\bar{x}^{3}(\bar{y}^{2} - \bar{z}^{2}), \bar{y}^{3}(\bar{z}^{2} - \bar{x}^{2}), \bar{z}^{3}(\bar{x}^{2} - \bar{y}^{2})\}, \end{split}$$

Tableau 2
Paramètres pour le schéma de Hilbert équivariant

R	<i>W</i> +	Diagramme de McKay	Graphe dual de la fibre dans W_+ -Hilb(\mathbb{A}^3)
$\overline{A_1 \times A_1 \times A_1}$	$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	χ_2 χ_4 χ_3	χ_2 χ_3 χ_4
$A_1 \times A_2$	$\mathfrak{S}_3=\mathbb{D}_3$	$\overset{\rho}{\checkmark}$	$\stackrel{\rho}{\bullet} \stackrel{\psi_2}{\bullet}$
$A_1 \times B_2$	\mathbb{D}_4	ψ_4 ψ_2 ψ_2	$\psi_4 \qquad \psi_2 \qquad \psi_2 \qquad \psi_3 \qquad \qquad$
$A_1 \times G_2$	\mathbb{D}_6	$\psi_4 \qquad \qquad \psi_2 \qquad \qquad \psi_2 \qquad \qquad \psi_3 \qquad \qquad \psi_3 \qquad \qquad \psi_4 \qquad \qquad \psi_2 \qquad \qquad \psi_3 \qquad \qquad \psi_4 \qquad \qquad \psi_4 \qquad \qquad \psi_4 \qquad \qquad \psi_4 \qquad \qquad \psi_5 \qquad \qquad \psi_6 $	$\psi_4 \qquad \qquad \psi_2 \qquad \qquad \psi_1 \qquad \psi_2 \qquad \qquad \psi_3 \qquad \qquad$
<i>A</i> ₃	\mathfrak{A}_4	$\stackrel{\psi_2}{\longleftarrow} \stackrel{\Psi}{\longleftarrow} \stackrel{\psi_3}{\longleftarrow}$	$\psi_2 \Psi \psi_3$
<i>B</i> ₃	\mathfrak{S}_4	θ ψ ε	e^{ψ}

$$B_{\varepsilon}[6] = \left\{ \bar{x}^2 \bar{y}^2 \left(\bar{x}^2 - \bar{y}^2 \right) + \bar{x}^2 \bar{z}^2 \left(\bar{z}^2 - \bar{x}^2 \right) + \bar{y}^2 \bar{z}^2 \left(\bar{y}^2 - \bar{z}^2 \right) \right\}, \quad B_{\psi}[6] = \left\{ \bar{y}^3 \bar{z}^3, \bar{x}^3 \bar{z}^3, \bar{x}^3 \bar{y}^3 \right\},$$
$$B_{\varepsilon\psi}[6] = \left\{ \bar{x}^2 \bar{y} \bar{z} \left(\bar{y}^2 - \bar{z}^2 \right), \bar{x} \bar{y}^2 \bar{z} \left(\bar{z}^2 - \bar{x}^2 \right), \bar{x} \bar{y} \bar{z}^2 \left(\bar{x}^2 - \bar{y}^2 \right) \right\}.$$

On démontre alors le résultat suivant :

Proposition 3.1. Les quatre familles suivantes indexées par \mathbb{P}^1 décrivent exactement l'ensemble des idéaux définissant une W_+ -grappe de \mathbb{A}^3 de support l'origine.

$$\begin{split} I_{\varepsilon}(a:b) &= \left\langle aB_{\varepsilon}[3] + bB_{\varepsilon}[6], B_{\theta}[5], B_{\psi}[4], B_{\varepsilon\psi}[5], f_{2}, f_{4}, f_{6}, B_{\psi}[6], B_{\varepsilon\psi}[6], d^{\circ} \geq 7 \right\rangle, \\ I_{\psi}(a:b) &= \left\langle aB_{\psi}[4] + bB_{\psi}[5], B_{\theta}[5], B_{\varepsilon\psi}[5], f_{2}, f_{4}, d^{\circ} \geq 6 \right\rangle, \\ I_{\varepsilon\psi}(a:b) &= \left\langle aB_{\varepsilon\psi}[4] + bB_{\varepsilon\psi}[5], B_{\theta}[5], B_{\psi}[5], f_{2}, f_{4}, d^{\circ} \geq 6 \right\rangle, \\ I_{\theta}(a:b) &= \left\langle aB_{\theta}[4] + bB_{\theta}[5], B_{\psi}[5], B_{\varepsilon\psi}[5], f_{2}, f_{4}, d^{\circ} \geq 6 \right\rangle. \end{split}$$

De plus, on a $I_{\varepsilon}(0:1) = I_{\psi}(1:0)$ et $I_{\psi}(0:1) = I_{\varepsilon\psi}(0:1) = I_{\theta}(0:1)$.

Par ailleurs, pour tout sous-groupe fini $G \subset SL_n(\mathbb{C})$, on peut définir le diagramme de McKay de G [4]. Le théorème suivant, est une extension à la dimension trois du résultat de McKay pour les sous-groupes finis de $SL_2(\mathbb{C})$.

Théorème 3.2 [6]. Soit R un système de racines de dimension trois, et $W_+ = W(R) \cap SL_3(\mathbb{C})$. La singularité \mathbb{A}^3/W_+ est résolue de façon crépante par le schéma de Hilbert équivariant et la fibre au dessus de l'origine a la configuration du diagramme de McKay du sous-groupe W_+ de $SL_3(\mathbb{C})$ auquel on retire les boucles, ce que récapitule le Tableau 2.

4. Famille de fibrés vectoriels

Friedman, Morgan et Witten redémontrent le théorème de Looijenga en termes de fibrés vectoriels. Dans les cas A_n (respectivement B_n), ils construisent grâce à la construction spectrale une famille de fibrés vectoriels sur E indéxée par W-Hilb(A), qui s'avère être la famille universelle des SU(n)-fibrés (respectivement Sp(2n)-fibrés) réguliers semistables sur E [5]. Soit *E* une courbe elliptique et *A* un schéma projectif lisse. La construction spectrale permet d'associer un fibré vectoriel à un couple (Z, g) où *Z* est une grappe de *A* et *g* est un morphisme de *Z* dans *E*. Notons *P* l'image schématique de *g*. Le support de *P* est fini, et on note $\text{Supp}(P) = \{p_1, \ldots, p_r\}$. Pour tout *i*, posons $Z_i = g^{-1}(p_i)$. Enfin, soit Γ_g le graphe de *g*. Alors pour tout *i*, $Z_i \times \{p_i\}$ et Γ_g sont des diviseurs de Cartier sur $Z \times E$ et on peut définir le faisceau localement libre

$$\mathcal{L}_g = \mathcal{O}_{Z \times X} \left(\Gamma_g - \sum Z_i \times \{p_i\} \right)$$

Alors $p_{2,*}(\mathcal{L}_g)$ est un faisceau localement libre de rang N sur E.

Supposons que Z est supporté par un point $a \in A$. Alors l'image schématique P de g est également supportée en un point $\{p_0\}$, et de longueur n. Comme P est un sous-schéma de la courbe lisse E, on a $\mathcal{O}_P = \mathbb{C}[x]/x^n$. Puis \mathcal{O}_Z étant de dimension finie sur \mathbb{C} , \mathcal{O}_Z est un \mathcal{O}_P -module de type fini. D'après la décomposition en modules monogènes d'un module de type fini sur un anneau principal, il existe des générateurs p_1, \ldots, p_r et des entiers k_1, \ldots, k_r tels que $\mathcal{O}_Z = \mathbb{C}[t]/t^{k_1}p_1 \oplus \mathbb{C}[t]/t^{k_2}p_2 \oplus \cdots \oplus \mathbb{C}[t]/t^{k_r}p_r$. De plus, comme $g^{\#}: \mathcal{O}_P \to \mathcal{O}_Z$ est injective, on peut supposer que $k_1 = n$ et les k_i sont tous inférieurs ou égaux à n. On ordonne les entiers k_i et on note $\mu(Z, g) = (k_1, \ldots, k_r)$ la partition de N associée à (Z, g).

Théorème 4.1 [6]. Soit A un schéma projectif lisse et E une courbe elliptique. Soit Z une N grappe de A supportée en un point et $g: Z \to E$ un morphisme. Soit $\mu(Z, g) = (k_1, ..., k_r)$ la partition associée à (Z, g). Alors le fibré associé sur E est $I_{k_1} \oplus I_{k_2} \oplus \cdots \oplus I_{k_r}$.

Grâce à ce théorème, on démontre que dans les cas des sytèmes de racines A_3 et B_3 , la famille de fibrés vectoriels sur *E* déduite de la construction spectrale et indexée par le W_+ -schéma de Hilbert n'est pas le tiré en arrière de la famille universelle de Friedman, Morgan et Witten. Par exemple, dans le cas B_3 , soit $I \in \mathbb{C}[x, y, z]$ un idéal définissant une $W_+(B_3)$ -grappe Z de A de support { (p_0, p_0, p_0) }.

- Si $I = I_{\varepsilon\psi}(a_{\varepsilon\psi} : b_{\varepsilon\psi})$, alors le fibré associé à Z est I_6 .
- − Si $I = I_{\theta}(1:0)$, alors le fibré associé à Z est $I_4 \oplus I_2$.
- Sinon, c'est la somme directe $I_5 \oplus \mathcal{O}_E$.

Références

- [1] E. Looijenga, Root system and elliptic curves, Invent. Math. 38 (1976) 17-32.
- [2] J. Bertin, D. Markushevich, Singularités quotients non abéliennes de dimension 3 et variétés de Calabi–Yau, Math. Ann. 299 (1994) 105–116.
- [3] T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (3) (2001) 535–554.
- [4] J. McKay, Cartan matrices, finite groups of quaternions, and Kleinian singularities, Proc. Amer. Math. Soc. 81 (1981) 153–154.
- [5] R. Friedman, J.W. Morgan, E. Witten, Vector bundles and F theory, Comm. Math. Phys. 187 (3) (1997) 679–743.
- [6] S. Térouanne, Correspondance de McKay : variations en dimension trois, Thèse de doctorat de mathématiques de l'université Joseph Fourier, 2004.