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Abstract

We answer positively Zariski’s multiplicity question for special classes of nonisolated singularities.To cite this article: C. Eyral,
C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Question de Zariski sur la multiplicité et singularités alignées. Nous répondons par l’affirmative à la question de Zariski
la multiplicité pour des classes particulières de singularités non isolées.Pour citer cet article : C. Eyral, C. R. Acad. Sci. Paris,
Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Let f : (Cn × C, {0} × C) → (C,0), (z1, . . . , zn, t) �→ f (z1, . . . , zn, t) = ft (z1, . . . , zn), with n � 3, be a germ (a
the origin) of holomorphic function such that, for allt near 0, the germft is reduced. Letνft be themultiplicity of ft

at 0, that is, the number of points of intersection, near 0, ofVft := f −1
t (0) with a generic (complex) line inCn passing

arbitrarily close to 0 but not through 0. As we are assuming thatft is reduced,νft is also theorder of ft at 0, that is,
the lowest degree in the power series expansion offt at 0. Letµft be the Milnor number offt at 0. One says that(ft )t
is topologically constant(respectivelyµ-constant, equimultiple) if, for all t near 0, there is a germ of homeomorphi
ϕt : (Cn,0) → (Cn,0) such thatϕ(Vft ) = Vf0 (respectivelyµft = µf0, νft = νf0). In the special case where(ft )t is
a family of isolatedsingularities (i.e., when, for allt near 0,ft has an isolated critical point at 0), ifn �= 3, then the
topological constancy is equivalent to theµ-constancy (cf. Lê [7], Teissier [16] and Lê and Ramanujam [8]).

In [21], Zariski asked the following question:if (ft )t is topologically constant, then is it equimultiple?More
than thirty years later, the question is, in general, still unsettled (even for isolated hypersurface singulariti
answer is, nevertheless, known to beyesin several special cases: for example, for families of plane curve singula
(Zariski [22]), families of convenient Newton nondegenerate (isolated) singularities (Abderrahmane [1] and S
Tomazella [15]), families of semiquasihomogeneous or quasihomogeneous isolated singularities2 (Greuel [4] and
O’Shea [13]), families of isolated singularities of the formft (z) = a(z) + θ(t)b(z), wherea, b : (Cn,0) → (C,0) and

E-mail address:eyralchr@yahoo.com (C. Eyral).
1 This research was supported by the Max-Planck Institut für Mathematik in Bonn.
2 In this case, it suffices to assume the semiquasihomogeneity or quasihomogeneity only for the germf0.
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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θ : (C,0) → (C,0), θ �≡ 0, are germs of holomorphic functions (Greuel [4] and Trotman [19,20]). For a detaile
more complete list, see the recent author’s survey article [3].

In this Note, we concentrate our attention on familiesf = (ft )t of the following form:

ft (z1, . . . , zn) = gt (z1, . . . , zn−1) + z2
nht (z1, . . . , zn),

where

g :
(
C

n−1 × C, {0} × C
) → (C,0), (z1, . . . , zn−1, t) �→ g(z1, . . . , zn−1, t) = gt (z1, . . . , zn−1),

and

h :
(
C

n × C, {0} × C
) → (C,0), (z1, . . . , zn, t) �→ h(z1, . . . , zn, t) = ht (z1, . . . , zn),

are germs of holomorphic functions such that, for allt near 0, the germgt (andft ) is reduced.
In [5], Greuel and Pfister already considered families of this type and they proved the following result:

Theorem 1 (Greuel and Pfister [5, Proposition 3.2]). Let f = (ft )t with ft (z1, . . . , zn) = gt (z1, . . . , zn−1) +
z2
nht (z1, . . . , zn) as above. Suppose that, for allt near 0, the germft has an isolated critical point at0 and the

germg0 is semiquasihomogeneous(or the germft has an isolated critical at0 andn = 3). If (ft )t is topologically
constant, then(gt )t is equimultiple. In particular, if, moreover, for allt near0, the multiplicity at0 of gt is less than
or equal to the order at0 of the(nonreduced) germ(z1, . . . , zn) �→ z2

nht (z1, . . . , zn), then(ft )t is equimultiple.

We extend here Greuel–Pfister’s result (concerningisolatedsingularities) to a special class of higher dimensio
singularities. We also prove similar results in the case wheregt , all small t , is convenient Newton nondegenerate
of the forma(z′) + θ(t)b(z′), wherez′ = (z1, . . . , zn−1).

Theorem 2. Let f = (ft )t with ft (z1, . . . , zn) = gt (z1, . . . , zn−1) + z2
nht (z1, . . . , zn) as above. Assume that, for alt

near0, the germft has ans-dimensional aligned singularity at0. Also suppose that(ft )t is topologically constant
Let (tk)k be an infinite sequence of points inC tending to0. Assume that the coordinatesz = (z1, . . . , zn), or some
cyclic permutation of them, form an aligning set of coordinates at0 for f0 and forftk , for all k ∈ N. Finally suppose
that at least one of the following four conditions is satisfied:

(i) for all t near 0, the germgt is convenient and has a nondegenerate Newton principal part with respect
coordinatesz′ = (z1, . . . , zn−1);

(ii) for all t near 0, the germgt is of the formgt (z
′) = a(z′) + θ(t)b(z′), wherea, b : (Cn−1,0) → (C,0) and

θ : (C,0) → (C,0), θ �≡ 0, are germs of holomorphic functions;
(iii) g0 is the germ of a semiquasihomogeneous polynomial with respect toz′;
(iv) n = 3.

Then(gt )t is equimultiple. In particular, if, moreover, for allt near0, the multiplicity at0 of the germgt is less than
or equal to the order at0 of the(nonreduced) germ(z1, . . . , zn) �→ z2

nht (z1, . . . , zn), then(ft )t is equimultiple.

For the definition ofalignedsingularities andaligning sets of coordinates, see Massey [9]. For the basic ma
about Newton polyhedra, we refer to Kouchnirenko [6] and Oka [11,12].

Aligned singularities were introduced by Massey in [9]. They generalize isolated singularities (obtained fos = 0)
and smooth one-dimensional singularities (in particular line singularities). Regarding this class of singu
Massey proved the followingreductiontheorem:

Theorem 3 (Massey [9, Theorem 7.9]). The following are equivalent:

(i) for all n � 4, the answer to Zariski’s multiplicity question is positive for families(ft )t of reduced analytic
hypersurfaces with isolated singularities;

(ii) for all n � 4, there exists an integers such that the answer to Zariski’s multiplicity question is positive
families(ft )t of reduced analytic hypersurfaces withs-dimensional aligned singularities(i.e., for all t near0,
ft has ans-dimensional aligned singularity at0);
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(iii) for all n � 4, for all integers, the answer to Zariski’s multiplicity question is positive for families(ft )t of reduced
analytic hypersurfaces withs-dimensional aligned singularities.

The proof of Theorem 2 is a combination of Massey’s proof of Theorem 3 and Greuel–Pfister’s proof of The
together combined with the results of Zariski [22], Abderrahmane [1], Saia and Tomazella [15], Greuel [4], O
[13] and Trotman [19,20]. Note, nevertheless, that Theorem 2 is not an immediate consequence of Theorem
(cf. Remark 1).

Theorem 2 answers positively Zariski’s multiplicity question for special classes of high-dimensional singu
without any assumption on the topological constancy, that is, without any assumption on the homeomorphismϕt . We
recall that, under some additional hypotheses on theϕt ’s, positive answers to Zariski’s question for high-dimensio
singularities already exist. For example, it is known that the multiplicity is an embeddedC1 invariant (cf. Ephraim [2]
and Trotman [17,18,20]) and an embedded ‘right–left bilipschitz’ invariant (cf. Risler and Trotman [14]).

Let us give an example where Theorem 2 applies. Setgt (z1, z2) = z2
1 + z2

2 + (1 − t)z3
1 andht (z1, z2, z3) = tz2

2,
so thatft (z1, z2, z3) = z2

1 + z2
2 + (1 − t)z3

1 + z2
3tz

2
2. For all t sufficiently close to 0, the singular locus offt is just

the z3-axis (so,ft has an 1-dimensional aligned singularity at 0). The coordinates(z1, z2, z3) are not aligning, bu
one checks easily that(z3, z1, z2) are aligning forft , all t . Since the singular locus off : (z1, z2, z3, t) �→ z2

1 + z2
2 +

(1 − t)z3
1 + z2

3tz
2
2 is nothing but the plane inC4 defined byz1 = z2 = 0 and the Milnor number offt,z3 : (z1, z2) �→

z2
1 + z2

2 + (1− t)z3
1 + z2

3tz
2
2 is independent oft andz3 (in fact,µft,z3

= 1 for all t, z3 near 0), it follows from Masse
[10, Proposition p. 47] that(ft )t is topologically constant. Hence Theorem 2(iv) applies. Sincegt is convenient and
Newton nondegenerate with respect to(z1, z2) and semiquasihomogeneous with respect to(z1, z2), this example
also shows that the special classes of high-dimensional singularities that we consider in the cases (i) and
obviously, (ii) too) are not empty.

Now, let us sketch the proof of Theorem 2. We start as in [9, Proof of Theorem 7.9]. Letζ = (ζ1, . . . , ζn) be a
cyclic permutation of the coordinatesz = (z1, . . . , zn). We use the notationζp := zn for the ‘special’ coordinatezn.
Suppose thatζ is aligning forf0 and forftk at 0, allk. Then, since(ft )t is a topologically constant family of aligne
singularities, the Lê numbers (cf. [9, Definition 1.11])λi

f0,ζ
(0 � i � n − 1) of f0 at 0 with respect toζ are equal

to the Lê numbersλi
ftk

,ζ of ftk at 0 with respect toζ , for all k large enough (cf. [9, Corollary 7.8]). Hence, by

inductive application of the Massey’s generalized Iomdine–Lê formula (cf. [9, Theorem 4.5 and Corollary 4.
all integersj1, . . . , js such that 0� j1 � j2 � · · · � js , the germsf0 + ζ

j1
1 +· · ·+ ζ

js
s andftk + ζ

j1
1 +· · ·+ ζ

js
s have

an isolated singularity at 0 and the same Milnor number at 0, providedk is large enough.3 In particular, by the uppe
semicontinuity of the Milnor number, this implies that, for allt sufficiently close to 0, the germft + ζ

j1
1 + · · · + ζ

js
s

has an isolated singularity at 0 and the same Milnor number, at 0, asf0 + ζ
j1
1 + · · · + ζ

js
s . In other words, the family

(ft +ζ
j1
1 +· · ·+ζ

js
s )t is aµ-constant family of isolated singularities. This implies, in particular, thatgt +ζ

j1
1 +· · · ζ js

s ,

where, if 1� p � s, the termζ
jp
p is omitted, has an isolated singularity at 04 for all small t . Hence, as in [5, Proof o

Proposition 3.2], by applying [5, Lemma 3.1] to the family(ft + ζ
j1
1 + · · · + ζ

js
s )t with the hyperplane inCn defined

by ζp = 0, one gets that(gt + ζ
j1
1 +· · ·+ ζ

js
s )t , where again, if 1� p � s, the termζ

jp
p is omitted, is also aµ-constant

family of isolated singularities. Now, according to the case (i) or (iii) that we consider, it follows from our hypot
that, if the ji ’s are chosen sufficiently large, then for allt sufficiently close to 0, the germgt + ζ

j1
1 + · · · + ζ

js
s

(ζ
jp
p omitted) is convenient and has a nondegenerate Newton principal part with respect to the coordinatesζ̃ ′ (case (i))

or g0+ζ
j1
1 +· · ·+ζ

js
s (ζ

jp
p omitted) is the germ of a semiquasihomogeneous polynomial with respect toζ̃ ′ (case (iii)).

Since theji ’s can be chosen arbitrarily large, Theorem 2 then follows from the results of Abderrahmane [1] an
and Tomazella [15] (case (i)), Greuel [4] and Trotman [19,20] (case (ii)), Greuel [4] and O’Shea [13] (case (ii
Zariski [22] (case (iv)).

3 According to [9], since we are using the coordinates(ζ1, . . . , ζn) for the germft , we use the coordinates̃ζ = (ζs+1, ζs+2, . . . , ζn, ζ1, . . . , ζs )

for the germft + ζ
j1
1 + · · · + ζ

js
s .

4 For the germgt , we use the coordinatesζ ′ = (ζ1, . . . , ζn), whereζp is omitted. For the germgt + ζ
j1
1 + · · · + ζ

js
s , where, if 1� p � s, the

termζ
jp
p is omitted, we use the coordinatesζ̃ ′ = (ζs+1, ζs+2, . . . , ζn, ζ1, . . . , ζs ), whereζp is omitted.
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Remark 1. If one replaces the wordsemiquasihomogeneousby quasihomogeneousin Theorem 2(iii), the argumen

above doesnot work. Indeed, in this case,g0 + ζ
j1
1 + · · · + ζ

js
s (ζ

jp
p is omitted) is neither quasihomogeneous w

an isolated singularity nor semiquasihomogeneous, so that we cannot apply the result of Greuel [4] and
[13] (we recall that a quasihomogeneous polynomial isnot semiquasihomogeneous if it has a nonisolated cri
point at 0). By contrast, one can replacesemiquasihomogeneousby quasihomogeneousin Theorem 1. Indeed, th
hypothesis for theft ’s of having an isolated critical point at 0 automatically implies a similar property for thegt ’s
and, consequently, ifg0 is quasihomogeneous, then it is necessarily semiquasihomogeneous too. This sho
Theorem 2 is not an immediate consequence of Theorems 3 and 1. Note that one can replacesemiquasihomogeneo
by quasihomogeneous with an isolated singularityin Theorem 2(iii).
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