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Abstract

We consider a (possibly) long-range dependent sequence with a shift in the mean. We estimate the location of the cha
using a cumulative sum estimator. The 1/n convergence rate typical of the independent case is also achieved for short-mem
long-memory sequences.To cite this article: S. Ben Hariz, J.J. Wylie, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Vitesses de convergence pour l’estimation de rupture pour des suites fortements dépendantes. Nous considérons une sui
éventuellement fortement dépendante, avec un saut dans sa moyenne. Nous estimons le temps de rupture à partir d
partielles. La vitesse de convergence 1/n, typique pour des suites indépendantes, est aussi obtenu pour des suites de cou
longue mémoire.Pour citer cet article : S. Ben Hariz, J.J. Wylie, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

There is a wide range of important applications in which a change in the marginal distribution of a random se
must be detected. The problem has been widely studied in the literature, and we refer the reader to the mon
Csörg̋o and Horvath [2] for a comprehensive review on the subject.

In the case in which the sequence is independent, both parametric and nonparametric methods have
sidered. For example, in the nonparametric setting the problem was considered by Carlstein [1]. This re
subsequently improved by Dumbgen [3] and later by Ferger [4] who obtained the exact rates of convergenc
probability and in an almost surely sense. Several works are concerned with the generalization of these re
weakly dependent setting.

✩ The work described in this Note was fully supported by a grant from the Research Grants Council of the Hong Kong Special Admi
Region, China (Project No. CityU 1220/02P).
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In recent years the importance of long-memory or long-range dependent (LRD) processes has been re
numerous applications, especially financial and telecommunication data. A second-order stationary sequenc(Xi)i�0
, is generally said to be LRD if

∞∑
i=1

∣∣Cov(X0,Xi)
∣∣ = ∞. (1)

Otherwise it is said to be short-memory or short-range dependent (SRD). The change-point test and estimat
LRD setting was considered by Giraitis et al. [5] using a nonparametric method for the case in which the di
between the distribution functions before and after the jump tends to zero with increasing sequence length. K
and Leipus [7] considered the change in the mean for dependent observations for LRD sequences. They obta
in probability for the cumulative sum (CUSUM) change-point estimator and give a rate of consistency of the es
that gets worse as the strength of the dependence increases. The problem with a jump in the mean that ten
was considered by Horvath and Kokoszka [6]. They proved the consistency of the estimator and gave the
distribution.

In this Note we will develop a unified framework for estimating a change in the mean of stationary sequen
can be either SRD or LRD. We will give rates of convergence for the widely used CUSUM estimator defined in
show that the rate of convergence of the CUSUM estimator is independent of the decay rate of the correlation
and so, under very weak conditions, independent of the dependence structure. So the 1/n rate in the independent ca
is also achieved for both LRD and SRD sequences.

2. Main results

Let (Xi)i=1,...,n be a stationary sequence that can be either independent, SRD or LRD. We assume thatE(X2) <

∞ and without loss of generality we takeE(X) = 0. The correlation function of the sequence is given by:r(i) =
Cor(X0,Xi). Let (Yi)i=1,...,n be a sequence with a shift in the mean, defined byYi = Xi + δ1i�nθ0 where 0< θ0 < 1
is the location of the change-point. Given a sequence,(Yi)i=1,...,n, we aim to estimate the change-pointθ0 using the
following family of estimators:

θn = 1

n
min

(
argmax
1�k<n

{|Uk|
})

, (2)

where

Uk =
(

k(n − k)

n

)1−γ
(

1

k

k∑
i=1

Yi − 1

n − k

n∑
i=k+1

Yi

)

andγ is a parameter satisfying 0� γ < 1. We now state the main result of the Note:

Theorem 2.1. Let (Xi)i=1,...,n be a stationary sequence with correlation functionr(n). Assume that there exi
constantsB > 0 andα > 0 such that|r(i)| � Bi−α for all i. Then we have

lim
x→+∞ lim

n→+∞ P
(
n|θn − θ0| > x

) = 0 (3)

whereθn is defined in(2).

We note that under a very weak condition on the decay of the correlation function, we obtain the same
every value ofα. We recall that ifr(i) ∼ Bi−α, thenα > 1 corresponds to the SRD case andα < 1 to the LRD case
So the 1/n rate is achieved for both SRD and LRD sequences.

The second result deals with the case in which the jump size,δ = δn, depends onn. As mentioned in the in
troduction, this has already been studied by Horváth and Kokoszka [6] where the authors obtained the exa
probability (see Lemma 4.5 therein), and the limiting distribution for Gaussian sequences. Here under slightly
conditions on the size of the jump we obtain the same rate in probability for more general sequences.
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Corollary 2.2. Under the conditions of Theorem(3). Suppose|δn| → 0 and either|δn|nα/2 → ∞ if γ < 1 − α/4,
|δn|nα/2(lnn)−1 → ∞ if γ = 1− α/4 or |δn|n2(1−γ ) → ∞ if γ > 1− α/4, then

lim
x→+∞ lim

n→+∞ P
(
n|δn|2/α|θn − θ0| > x

) = 0. (4)

Before presenting the proof, we give a qualitative explanation of why the rate is independent ofα. We define
tk := k/n, thenUk := Un(tk) whereUn is expressed as a sum of its mean and a centered random component:

Un(t) := n1−γ

(t (1− t))γ

(
δg(t) + Bn(t)

)
. (5)

Here, the mean component is given byg(t) = (1− θ0)t1t�θ0 + θ0(1− t)1t>θ0 and the centered random compone
Bn, is given by

Bn(t) := Wn(t) − tWn(1) and Wn(t) := 1

n

[nt]∑
i=1

Xi.

Under appropriate conditions on the underlying sequence, the sequence of functionsWn(·) (when suitably nor-
malized) converges, in a weak sense, to either a Brownian motion, a fractional Brownian motion or more g
a Hermite process. The fact that the rate of convergence for the estimator is independent ofα is due to the cance
lation of two opposing effects: the rate of convergence of partial sums, and the size of fluctuations of the D
line Wn(t). Assume for simplicity thatr(i) ∼ Ci−α. Roughly speaking, in the LRD case(α < 1), Wn(t), and hence
Bn(t), converges to zero with a rate of the ordern−α/2. So asα decreases, the size of the random component oUk

becomes larger, making the estimation more difficult. However, asα decreasesWn(t), and henceBn(t), become more
regular in the sense thatn−α/2|Wn(t)−Wn(t

′)| has size of order|t − t ′|1−α/2. Hence, local fluctuations in the rando
component ofUk are reduced and so estimation becomes easier. These two effects cancel each other and t
rate is independent ofα.

3. Sketch of the proof

In what followsK1,K2, . . . denote positive constants that are independent ofn. We will take α < 1, since any
correlation function that satisfies the conditions of the theorem forα � 1 will also satisfy the conditions for an
smaller value ofα. Without loss of generality we also assume that the size of the jump is positive (δ > 0).

We define the following sets

Sn,j = {
θ : 2j < rn|θ − θ0| � 2j+1},

wherern is a positive sequence to be chosen later. Let 0< η < min(θ0,1 − θ0)/2 andJ = J (n,η) be chosen suc
that 2J < rnη � 2J+1. For the sake of brevity, we definew(θ) := (θ(1 − θ))γ andh(θ) := g(θ)/w(θ). Let θn be a
maximum of{|Un(t)|, t ∈ Gn}, whereGn := {k/n, 1� k < n}. Then

P
(
rn|θn − θ0| > 2M

)
�

J∑
j=M

P(θn ∈ Sn,j ) + P
(|θn − θ0| > η

)
. (6)

Sinceθn is a maximum,|Un(θn)| � |Un(θ0)|. In order to controlP(θn ∈ Sn,j ) the only difficulty arises when bot
Un(θn) andUn(θ0) are positive, in which case we have to bound

P

(
Bn(θn)

w(θn)
− Bn(θ0)

w(θ0)
� δ

(
h(θ0) − h(θn)

))
. (7)

This in turn can be reduced to considering

P

(
sup

θ∈Sn,j

∣∣(Bn(θ) − Bn(θ0)
)∣∣ � δCw(θ0)

2j−1

rn

)
.

To bound the above expression, we need the following maximal inequality which is a special case of Theo
Moricz [8].
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Lemma 3.1. Assume that there exists constantsB > 0 andα < 1 such that|r(i)| � Bi−α for all i. Then there exists
constantD = D(B,α) such that

E

(
max

1�k�n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
)2

� DE(X2)n2−α. (8)

Using (6) and (8) yields

P
(
rn|θn − θ0| > 2M

)
� K5δ

−2JE(X2)n−α + K6δ
−2

E(X2)

(
rn

n

)α J∑
j=M

2−jα + P
(|θn − θ0| > η

)
. (9)

According to the results of Kokoszka and Leipus [7], limn→∞ P(|θn − θ0| > η) = 0. Taking rn = n and lettingn

go to∞ yields

lim
n→∞ P

(
n|θn − θ0| > 2M

)
� K6δ

−2
E(X2)

∞∑
j=M

2−jα.

Letting M tend to infinity completes the proof of (3). The corollary is just a simple consequence of Corollary
Kokoszka and Leipus [7] and (9).
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