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Abstract

We prove exponential localization for the Schrdodinger operator with a Poisson random potential at the bottom of the spectrum
in any dimension. We also prove exponential localization in a prescribed interval for all large Poisson densities. In addition, we
obtain dynamical localization and finite multiplicity of the eigenvaluiscite this article: F. Germinet et al., C. R. Acad. Sci.

Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Sur localization pour |'opérateur de Schrédinger avec un potentiel aléatoire de Poisson. On démontre localization expo-
nentielle pour I'opérateur de Schrodinger avec un potentiel aléatoire de Poisson, pour les basses energies et en toute dimension.
démontre aussi localization exponentielle dans un intervalle d’énergies donné et a grande densité. On obtient de plus localisatio
dynamique et le fait que la multiplicité des valeurs propres est fitter citer cet article: F. Germinet et al., C. R. Acad. Sci.

Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Results

The Poisson Hamiltonian is the random Schrédinger operato? @Rl given by

Hy=—A+Vx, WithVx(x)=) u(x—¢), (1)
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where the single-site potentiais a nonnegativ€'! function onR? with compact support — without loss of generality
we takeu(x) < u(0) = 1 — andVy is a Poisson random potential, that}sjs a Poisson process &f with density

o > 0. Thus the configuratioX is a random countable subset®f, and, lettingNx (A) denote the number of points
of X in the Borel setA ¢ R?, eachNx(A) is a Poisson random variable with mea| (i.e., P, {Nx(A) =k} =
(olAD¥(k)~teelAl for k =0,1,2,...), and the random variable#Vx (A;)}1_; are independent for disjoint Borel
sets{Aj}’/’.zl. We will denote by X', IP,) the underlying probability space for the Poisson process with degmsity

Note thatHy is an ergodic (with respect to translationsRA) random self-adjoint operator. It follows that the
spectrum ofHy is the same fof?,-a.e. X, as well as the decomposition of the spectrum into pure point, absolutely
continuous, and singular continuous spectra./~as above we actually get(Hx) = [0, +oo[ for P,-a.e.X [8].

We prove exponential localization for Poisson Hamiltonians at the bottom of the spectrugz. Bg denote the
characteristic function of the s@& c R?, with x, denoting the characteristic function of the cube of side 1 centered
atx e RY. We write (x) = /1 + [x|2, T (x) = (x)" for some fixeds > §.

Theorem 1.1. Givenp > 0, there existsEg = Eo(e) > 0 andm = m(p) > 0, such that forP,-a.e. X the following
holds the operatorHx has pure point spectrum ifD, Eg] with exponentially localized eigenfunctions with rate of
decaym, i.e., if ¢ is an eigenfunction offx with eigenvalueE € [0, Eo], there is a constanfy < oo such that

lx:pll < Cpe™™ forall x e RY. )

Moreover there exist constants> 1, s €10, 1], andC < oo, such that for eigenfunctiong, ¢ (possibly equa) with
eigenvaluer € [0, Eg] we have

I ol < CIT 2y T2 e e 1 forall x, y e 27 ©)

In particular, the eigenvalues dffx in [0, Ep] have finite multiplicity, andHx exhibits dynamical localization in
[0, Ep], that is, for anyp > 0 we have

SEF’” (x)P efilHXX[O,Eo](Hx)on; < 00. 4

For Poisson random potentials the dengitys a measure of the amount of disorder in the medium. The next
theorem gives localization at high disorder.

Theorem 1.2. Given Eg > 0, there existgo > 0 such that forg > pg the conclusions of Theorefinl hold in the
interval [0, Ep].

While Poisson Hamiltonians are the most natural random Schrddinger operators in the continuum (the distributiol
of impurities in a material being naturally modeled by a Poisson process), a mathematical proof of the existenc
of localization has been a long-standing open problem. Localization has been known only in one dimension [10]
A Poissonian model, which incorporates random intensities with bounded densities and requires single-site potentia
that do not decay too slowly at infinity, was considered in [3].

In the multi-dimensional case, localization in the continuum had been proved for Anderson-type Hamiltonians with
random intensities with bounded densities, e.g., [3], and f@&%ergodic Schrodinger operator with a Gaussian ran-
dom potential [4]; in both cases there is an “a priori” Wegner estimate obtained by averaging with bounded densities
But recently Bourgain and Kenig [2] proved localization for the Bernoulli—Anderson Hamiltonian, with the Wegner
estimate being proven in a multiscale analysis.

To prove Theorems 1.1 and 1.2 we exploit the new ideas introduced by Bourgain and Kenig [1,2]. In particular,
the control of the resonances (the Wegner estimate) is achieved by a multiscale analysis using ‘free sites’ and a ne
guantitative version of unique continuation which gives a lower bound on eigenfunctions.

The control on the eigenfunction correlations given in (3) was introduced in [7]. That (3) implies dynamical local-
ization is rather immediate. As for the finite multiplicity property, it follows by estimating

e (oo 3 ¢ xiey (Hx0O |5

from (3) and summing over € Z<.
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In the next section we outline the main ideas in the proof of Theorem 1.1; detailed arguments will be given in [5].
Theorem 1.2 is proved in a similar way, although the proof requires some modifications.

2. Themain ideas

Given a cubet in R4, we letHx 4 = —A 4+ Vx, 4 be therestriction oHx to A with Dirichlet boundary condition.
We consider the finite volume resolveR} (E) = (H4 — E)~1 (we will omit X from the notation). By, ¢/, ... we
denote positive constants (not necessarly the same) independetit,of . .

The multiscale analysis requires anpriori probabilistic estimate on the resolveR{y (E) for all E € [0, Eg]
at a fixed, but sufficiently large, initial scaley, where A is a cube of sidd.o centered at, say. To obtain this
initial estimate for Theorem 1.1, we divide the culténto non-overlapping cubes () of sidefo ~ (o~ tlog Lo)Y/¢
centered at pointg € xo + £0Z?. We consider configurations such thatIV (A(j)) < o€o? for all A(j), an event
with high probability, more precisely, with probability 1 — (Lo/ﬁo)dLgp >1-— QLa”+d, where we can arrange for
p large as desired.

For such configurations, we pick ortg € A(j), and split the potential a¥, = Vl(xl) + V@, with V/(Xl) =
Z’/ ulx —gj), Wherez’/ denotes the sum over sitgss xo + 2¢0Z¢ only; as a consequence théx — ¢;) in the

sum are non-overlapping. We haveg(l//(‘l) <1land V/(‘Z) > 0. In order to estimat¢R 4 (E)||, it is convenient to use
the operatod 4 (E), defined by

Ta(E)=HP + 1) PA+E-VvP)YHP +1)7 Y2, withH? =—A,+V@ >0 (5)

Proceeding as in [2, Section 4], suppdigé (E)|| > 1— Eg with Eg small. Then there ig € L2(R?), with 1— /Eg <
llgll <1and, usingvl(f) >0, Vgl < 2E3/4, such that for each € A we have

0< (V. Pg, g) <cE*(lal + 1), (6)

wherert, denotes translation by and the estimate is uniform ib (cf. [2, Egs. (4.7), (4.8), and (4.10)]). On the other
hand, takingk = 10¢g, and recalling the definition of P, we get (cf. [2, Egs. (4.12) and (4.15)])

/ ra(Vl(xl))da>cXAL with ¢ > 0. @)

[-K, K¢

Combining (6), (7), and the lower bound @, we getc(1 — \/Eg)? < c’Eé/4Kd+1, which leads to a contradiction
for Eg~ £o~“@+DH) andLg large.

We may thus conclude that df is fixed, p > 0 is given,E € [0, Eg] with Eg &~ (0 ~tlog Lg)~“#@+D/d+) "andLg
is sufficiently large, then, with probabilityz 1 — Lgp, we have||RA(E)| < Egl and || xxRa(E)xyll S e Lo for
x,ye Awith |[x —y| > %. Moreover, it is clear that iV/(XZ) = Z{eY u(x —¢), the results are still valid if we replace
V/(f) by > ey tzu(x — ¢) with arbitraryz, € [0, 1]. We now declare all boxes () with j ¢ xo + 200Z% (and hence

do not contribute td//ﬁl)) to befree boxesMoreover, inside the free boxes we use the representation of the Poisson
processX by a thinned Poisson process (e.g., [9]), that is, by a Poisson prBogih density 2 in such a way that
to each Poisson poirste Y is attached a Bernoulli random variallg, ¢z = 0 or 1 with equal probability, and the
single-site contribution to the potential is given &y (x — £). Note that any sit¢ € Y in a free box is dree sitein
the sense of [2].

The multiscale analysis now proceeds by inductiondlfs a box of sizeL, we divide it into non-overlapping
cubesA(w) of sidex e~% centered at points € e~ 174 With probability> 1— L~7, p large, we requiréV (A) <
oL? and all N(A(w)) < 1. We introduce an equivalence relation on Poisson configurafiopsn A; X 4 is the
collection of Poisson configurations i that cannot be distinguished frok, by the counting function®/ (A(w)).
The crucial observation is that if we change a Poisson configuration to another one in the same equivalence class, the
the eigenvalues affi 4 in a fixed interval do not move by more th@e—Lz. We may thus consider only the case when

the Poisson points it are in the lattice ELZZ”’, since the desired results will then hold for the whole equivalence
class. This reduction allows the use of the results in [2], using equivalence classes of Poisson configurations instead c
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fixed Bernoulli configurations. Inside the free boxes equivalence classes are defined as above but for the Poisson poi
in Y. Since we have a finite number of equivalence classes of configurations inside a free box, we fix the points of th
Poisson procesE in the free boxes, and conduct the analysis of [2, Lemma 5.1], “tuning” the free parameiers

g¢ =0 or 1 to obtain “good” configurations, with a probability estimated by Sperner’'s Lemma using [2, Lemma 3.1].
As in [2], we get the following result (cf. [2, Proposition A]), wherg, denotes a cube of side

Proposition 2.1. Giveng > 0, there existsy = Eg(0) > 0 and Lo = Lo(0) < oo, such that ifX,, (E) denotes the
Poisson configurations for which

1— . L
|Ra,(E)| <€ and |x«Ra,(E)xy| <€t for|x—y|> o (8)
thenforallL > Lo and all E € [0, Eg] we have
1
PQ{XAL(E)}>1_W' 9)

Proposition 2.1 provides a single-energy multiscale analysis. The weak probability estimate in (9) does not allow
for an energy-interval multiscale analysis as in [11,6]. The first part of Theorem 1.1, namely exponential localization,
requires the energy elimination scheme given in [2, Section 7]. To obtain the decay of the eigenfunction correlation:
given in (3) we add ideas from [7].
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