On the numerical solution of a two-dimensional Pucci's equation with Dirichlet boundary conditions: a least-squares approach

Edward J. Dean ${ }^{\text {a }}$, Roland Glowinski ${ }^{\text {b,a }}$
${ }^{\text {a }}$ Department of Mathematics, University of Houston, Houston, TX 77024-3008, USA
${ }^{\text {b }}$ Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France

Received 29 July 2005; accepted 8 August 2005

Presented by Philippe G. Ciarlet

Abstract

In this Note we discuss the numerical solution of a two-dimensional, fully nonlinear elliptic equation of the Pucci's type, completed by Dirichlet boundary conditions. The solution method relies on a least-squares formulation taking place in a subset of $H^{2}(\Omega) \times \mathbf{Q}$, where \mathbf{Q} is the space of the 2×2 symmetric tensor-valued functions with components in $L^{2}(\Omega)$. After an appropriate space discretization the resulting finite dimensional problem is solved by an iterative method operating alternatively in the spaces V_{h} and \mathbf{Q}_{h} approximating $H^{2}(\Omega)$ and \mathbf{Q}, respectively. The results of numerical experiments are presented; they validate the methodology discussed in this Note. To cite this article: E.J. Dean, R. Glowinski, C. R. Acad. Sci. Paris, Ser. I 341 (2005). © 2005 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Sur la solution numérique de l'équation bi-dimensionelle de Pucci avec conditions limites de Dirichlet : une formulation par moindres carrés. Dans cette Note, on étudie la résolution numérique d'une équation elliptique bi-dimensionelle, pleinement non linéaire et de type Pucci. La méthode de résolution repose sur une formulation par moindres carrés dans un sous-ensemble de $H^{2}(\Omega) \times \mathbf{Q}$ où \mathbf{Q} est l'espace des fonctions à valeurs tensorielles symetriques 2×2, dont les composantes sont dans $L^{2}(\Omega)$. Après approximation par éléments finis, on résoud le problème en dimension finie qui en résulte par une méthode itérative qui opère alternativement dans les espaces V_{h} et \mathbf{Q}_{h}, approximations respectives de $H^{2}(\Omega)$ et \mathbf{Q}. Les résultats d'expériences numériques sont presentés ; ils valident la méthodologie numérique décrite dans cette Note. Pour citer cet article : E.J. Dean, R. Glowinski, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
© 2005 Published by Elsevier SAS on behalf of Académie des sciences.

1. Problem formulations

Let Ω be a bounded domain of \mathbf{R}^{2}; we denote by Γ the boundary of Ω and by $x=\left\{x_{1}, x_{2}\right\}$ the generic point of \mathbf{R}^{2}. Following, e.g., Caffarelli and Cabré ([3]; see also the references therein and [2]) we consider the following nonlinear Dirichlet problem for the Pucci's equation: Find ψ such that

$$
\begin{equation*}
\alpha \lambda^{+}+\lambda^{-}=0 \quad \text { in } \Omega, \quad \psi=g \quad \text { on } \Gamma, \tag{PE-D}
\end{equation*}
$$

[^0]where, in (PE-D): (i) λ^{+}(resp., λ^{-}) denotes the largest (resp., the smallest) eigenvalue of the Hessian matrix $D^{2} \psi=$ $\left(\partial^{2} \psi / \partial x_{i} \partial x_{j}\right)_{1 \leqslant i, j \leqslant 2}$, (ii) $\alpha \in(1,+\infty)$ (if $\alpha=1$, (PE-D) reduces to the Poisson-Dirichlet problem $\Delta \psi=0$ in Ω, $\psi=g$ on $\Gamma)$. We have thus $\lambda^{+}=1 / 2\left(\Delta \psi+\left(|\Delta \psi|^{2}-4 \operatorname{det} D^{2} \psi\right)^{1 / 2}\right)$ and $\lambda^{-}=1 / 2\left(\Delta \psi-\left(|\Delta \psi|^{2}-4 \operatorname{det} D^{2} \psi\right)^{1 / 2}\right)$, which, combined with (PE-D), implies in turn that
\[

$$
\begin{equation*}
(\alpha+1) \Delta \psi+(\alpha-1)\left(|\Delta \psi|^{2}-4 \operatorname{det} D^{2} \psi\right)^{1 / 2}=0 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

\]

It follows then from (1) that problem (PE-D) is equivalent to

$$
\left\{\begin{array}{l}
\alpha|\Delta \psi|^{2}+(\alpha-1)^{2} \operatorname{det} D^{2} \psi=0 \quad \text { in } \Omega, \quad \psi=g \quad \text { on } \Gamma \tag{2}\\
\Delta \psi \leqslant 0 \quad \text { in } \Omega
\end{array}\right.
$$

Relations (2) show that the Pucci's problem discussed here combines (nonlinearly) Poisson and Monge-Ampère equations. The numerical solution of (PE-D), via (2), will be discussed in the following sections. Actually, assuming that $g \in H^{3 / 2}(\Gamma)$, we will look for solutions of (PE-D), (2) belonging to $H^{2}(\Omega)$.

2. Some exact solutions

In order to validate numerical solution methods it is always useful to have access to (nontrivial) exact solutions. Let $x_{0} \in \mathbf{R}^{2}$; we shall denote $\left|x-x_{0}\right|$ by ρ. Suppose that u is a function of ρ only verifying the partial differential equation in (2). We have then (away from $x=x_{0}$ and with obvious notation)

$$
\begin{equation*}
\alpha\left|\rho^{-1}\left(\rho u^{\prime}\right)^{\prime}\right|^{2}+(\alpha-1)^{2} \rho^{-1} u^{\prime} u^{\prime \prime}=0 \tag{3}
\end{equation*}
$$

It follows from (3) that u defined by $u(x)=C \rho^{m}+p(x)$, where C is a constant, $m=1-\frac{1}{\alpha}$ or $1-\alpha$ and p is a polynomial of degree $\leqslant 1$, is solution of the partial differential equation in (2). However, since $\Delta\left(\rho^{m}\right)=m^{2} \rho^{m-2}$ away from $x=x_{0}$, in order to verify the inequality in (2) we have to take $C<0$. In other words, ψ defined by

$$
\begin{equation*}
\psi(x)=-C \rho^{m}+p(x) \tag{4}
\end{equation*}
$$

with C a positive constant and m and p as above, verifies the partial differential equation and inequality in (2). If $x_{0} \notin \bar{\Omega}$ then ψ defined by (4) belongs to $C^{\infty}(\bar{\Omega})$; on the other hand, if $x_{0} \in \bar{\Omega}$ the above function ψ does not have the $H^{2}(\Omega)$-regularity.

3. A least-squares formulation of problem (2)

Problem (2) is clearly equivalent to

$$
\left\{\begin{array}{l}
\mathbf{p}=D^{2} \psi \tag{5}\\
\alpha\left(p_{11}+p_{22}\right)^{2}+(\alpha-1)^{2}\left(p_{11} p_{22}-p_{12}^{2}\right)=0, \quad p_{11}+p_{22} \leqslant 0 \\
\psi=g \quad \text { on } \Gamma
\end{array}\right.
$$

with $\mathbf{p}=\mathbf{p}^{t}=\left(p_{i j}\right)_{1 \leqslant i, j \leqslant 2}$ and $p_{i j}=\partial^{2} \psi / \partial x_{i} \partial x_{j}$. Suppose that problem (2) has a solution in $H^{2}(\Omega)$. Following a strategy which has been successful with the Monge-Ampère equation (see [4]) we are going to investigate a leastsquares method, operating in $H^{2}(\Omega)$ and related functional spaces, for the solution of problem (5). Let us introduce the following spaces and set:

$$
\begin{align*}
& V_{g}=\left\{\varphi \mid \varphi \in H^{2}(\Omega), \varphi=g \text { on } \Gamma\right\} \tag{6}\\
& \mathbf{Q}=\left\{\mathbf{q} \mid \mathbf{q}=\left(q_{i j}\right)_{1 \leqslant i, j \leqslant 2}, q_{i j} \in L^{2}(\Omega), \mathbf{q}=\mathbf{q}^{t}\right\} \tag{7}\\
& \mathbf{Q}_{P}=\left\{\mathbf{q} \mid \mathbf{q} \in \mathbf{Q}, \alpha\left(q_{11}+q_{22}\right)^{2}+(\alpha-1)^{2}\left(q_{11} q_{22}-q_{12}^{2}\right)=0, q_{11}+q_{22} \leqslant 0 \text { a.e. in } \Omega\right\} \tag{8}
\end{align*}
$$

The space \mathbf{Q} is an Hilbert space for the following scalar product and norm:

$$
\begin{equation*}
\left(\mathbf{q}, \mathbf{q}^{\prime}\right)_{\mathbf{Q}}=\int_{\Omega} \mathbf{q}: \mathbf{q}^{\prime} \mathrm{d} x \quad \text { and } \quad\|\mathbf{q}\|_{\mathbf{Q}}=\sqrt{(\mathbf{q}, \mathbf{q})_{\mathbf{Q}}} \quad\left(=\sqrt{\int_{\Omega}|\mathbf{q}|^{2} \mathrm{~d} x}\right) \tag{9}
\end{equation*}
$$

in (9), $\mathbf{S}: \mathbf{T}=s_{11} t_{11}+s_{22} t_{22}+s_{12} t_{12}, \mathbf{S}=\left(s_{i j}\right)_{1 \leqslant i, j \leqslant 2}$ and $\mathbf{T}=\left(t_{i j}\right)_{1 \leqslant i, j \leqslant 2}$, with $\mathbf{S}=\mathbf{S}^{t}$ and $\mathbf{T}=\mathbf{T}^{t}$, and $|\mathbf{S}|=$ $\sqrt{\mathbf{S}}: \mathbf{S}, \forall \mathbf{S}, \mathbf{S}=\mathbf{S}^{t}$. A quite natural least-squares formulation of problem (5) reads as follows:

$$
\left\{\begin{array}{l}
\{\psi, \mathbf{p}\} \in V_{g} \times \mathbf{Q}_{P}, \tag{LS.PE-D}\\
j(\psi, \mathbf{p}) \leqslant j(\varphi, \mathbf{q}), \quad \forall\{\varphi, \mathbf{q}\} \in V_{g} \times \mathbf{Q}_{P},
\end{array}\right.
$$

with

$$
\begin{equation*}
j(\varphi, \mathbf{q})=\frac{1}{2} \int_{\Omega}\left|D^{2} \varphi-\mathbf{q}\right|^{2} \mathrm{~d} x \tag{10}
\end{equation*}
$$

The iterative solution of problem (LS.PE-D) will be discussed in the following section.

4. Iterative solution of the least-squares problem

Let us denote by $I_{\mathbf{Q}_{P}}$ the indicator functional of the set \mathbf{Q}_{P}, namely, the mapping from \mathbf{Q} into $\mathbf{R} \cup\{+\infty\}$ defined by $I_{\mathbf{Q}_{P}}(\mathbf{q})=0$ if $\mathbf{q} \in \mathbf{Q}_{P}, I_{\mathbf{Q}_{P}}(\mathbf{q})=+\infty$ if $\mathbf{q} \in \mathbf{Q} \backslash \mathbf{Q}_{P}$. Problem (LS.PE-D) is clearly equivalent to

$$
\begin{equation*}
\min _{\{\varphi, \mathbf{q}\} \in V_{g} \times \mathbf{Q}}\left[j(\varphi, \mathbf{q})+I_{\mathbf{Q}_{P}}(\mathbf{q})\right] . \tag{11}
\end{equation*}
$$

At $\{\psi, \mathbf{p}\}$ a necessary optimality condition for problem (11) reads as follows:

$$
\left\{\begin{array}{l}
\{\psi, \mathbf{p}\} \in V_{g} \times \mathbf{Q} ; \quad \forall\{\varphi, \mathbf{q}\} \in V_{0} \times \mathbf{Q}, \text { we have } \tag{12}\\
\int_{\Omega}\left(D^{2} \psi-\mathbf{p}\right):\left(D^{2} \varphi-\mathbf{q}\right) \mathrm{d} x+\left\langle\partial I_{\mathbf{Q}_{P}}(\mathbf{p}), \mathbf{q}\right\rangle=0
\end{array}\right.
$$

with $\partial I_{\mathbf{Q}_{P}}(\mathbf{p})$ a generalized differential of functional $I_{\mathbf{Q}_{P}}(\cdot)$ at \mathbf{p}. To (12), we associate the following initial value problem:

$$
\left\{\begin{array}{l}
\text { Find }\{\psi(t), \mathbf{p}(t)\} \in V_{g} \times \mathbf{Q}, \forall t \in(0,+\infty), \text { such that } \tag{13}\\
\int_{\Omega} \Delta(\partial \psi / \partial t): \Delta \varphi \mathrm{d} x+\int_{\Omega} D^{2} \psi: D^{2} \varphi \mathrm{~d} x=\int_{\Omega} \mathbf{p}: D^{2} \varphi \mathrm{~d} x, \quad \forall \varphi \in V_{0}, \\
\int_{\Omega} \frac{\partial \mathbf{p}}{\partial t}: \mathbf{q} \mathrm{d} x+\int_{\Omega} \mathbf{p}: \mathbf{q} \mathrm{d} x+\left\langle\partial I_{\mathbf{Q}_{P}}(\mathbf{p}), \mathbf{q}\right\rangle=\int_{\Omega} D^{2} \psi: \mathbf{q} \mathrm{d} x, \quad \forall \mathbf{q} \in \mathbf{Q}, \\
\{\psi(0), \mathbf{p}(0)\}=\left\{\psi_{0}, \mathbf{p}_{0}\right\} .
\end{array}\right.
$$

In order to solve problem (13), we advocate operator-splitting; applying to the solution of (13) the MarchukYanenko scheme, we obtain (with $\tau(>0)$ a time-discretization step):

$$
\begin{equation*}
\left\{\psi^{0}, \mathbf{p}^{0}\right\}=\left\{\psi_{0}, \mathbf{p}_{0}\right\} ; \tag{14}
\end{equation*}
$$

then for $n \geqslant 0,\left\{\psi^{n}, \mathbf{p}^{n}\right\}$ being known, compute $\left\{\psi^{n+1}, \mathbf{p}^{n+1}\right\}$ via the solution of

$$
\begin{align*}
& \left(\mathbf{p}^{n+1}-\mathbf{p}^{n}\right) / \tau+\mathbf{p}^{n+1}+\partial I_{\mathbf{Q}_{P}}\left(\mathbf{p}^{n+1}\right)=D^{2} \psi^{n}, \quad \text { and, } \tag{15}\\
& \int_{\Omega} \Delta\left[\left(\psi^{n+1}-\psi^{n}\right) / \tau\right]: \Delta \varphi \mathrm{d} x+\int_{\Omega} D^{2} \psi^{n+1}: D^{2} \varphi \mathrm{~d} x=\int_{\Omega} \mathbf{p}^{n+1}: D^{2} \varphi \mathrm{~d} x, \quad \forall \varphi \in V_{0} . \tag{16}
\end{align*}
$$

Since linear variational problems such as (16) have been encountered already, when addressing for example the solution of the elliptic Monge-Ampère equation by augmented Lagrangians and least-squares methods (see [4,5] for details), we shall focus (in Section 5) on the solution of the (highly) nonlinear problems (15).

Remark 1. An alternative to scheme (14)-(16) is provided by

$$
\begin{equation*}
\left\{\psi^{0}, \mathbf{p}^{0}\right\}=\left\{\psi_{0}, \mathbf{p}_{0}\right\} ; \tag{17}
\end{equation*}
$$

then for $n \geqslant 0$, from $\left\{\psi^{n}, \mathbf{p}^{n}\right\}$ compute $\left\{\psi^{n+1}, \mathbf{p}^{n+1}\right\}$ via the solution of

$$
\begin{align*}
& \left(\mathbf{p}^{n+1 / 2}-\mathbf{p}^{n}\right) / \tau+\mathbf{p}^{n+1 / 2}+\partial I_{\mathbf{Q}_{P}}\left(\mathbf{p}^{n+1 / 2}\right)=\mathbf{0} \tag{18}\\
& \psi^{n+1} \in V_{g} ; \quad \int_{\Omega} \Delta\left[\left(\psi^{n+1}-\psi^{n}\right) / \tau\right]: \Delta \varphi \mathrm{d} x+\int_{\Omega} D^{2} \psi^{n+1}: D^{2} \varphi \mathrm{~d} x=\int_{\Omega} \mathbf{p}^{n+1 / 2}: D^{2} \varphi \mathrm{~d} x, \quad \forall \varphi \in V_{0}, \tag{19}\\
& \left(\mathbf{p}^{n+1}-\mathbf{p}^{n+1 / 2}\right) / \tau=D^{2} \psi^{n+1} \tag{20}
\end{align*}
$$

Other splitting schemes are possible.

5. Solution of the nonlinear problems (15)

Relation (15) is nothing but a necessary optimality condition for the following minimization problem:

$$
\begin{equation*}
\min _{\mathbf{q} \in \mathbf{Q}_{P}}\left[\frac{1}{2}(1+\tau) \int_{\Omega}|\mathbf{q}|^{2} \mathrm{~d} x-\int_{\Omega}\left(\mathbf{p}^{n}+\tau D^{2} \psi^{n}\right): \mathbf{q} \mathrm{d} x\right] \tag{21}
\end{equation*}
$$

Problem (21) can be solved point-wise (in practice at the vertices of a finite element or finite difference mesh). Indeed, we have to minimize, a.e. on Ω, a three-variable polynomial of the following type $\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right)-\left(b_{1} z_{1}+b_{2} z_{2}+\right.$ $b_{3} z_{3}$), over the set $\left\{\mathbf{z}\left|\mathbf{z}=\left\{z_{i}\right\}_{i=1}^{3}, \alpha\right| z_{1}+\left.z_{2}\right|^{2}+(\alpha-1)^{2}\left(z_{1} z_{2}-z_{3}^{2}\right)=0, z_{1}+z_{2} \leqslant 0\right\}$. The above three-dimensional problem can be reduced to a simple one-dimensional one; to achieve this dimension reduction we shall proceed as follows:
(i) Denote $\alpha /(\alpha-1)^{2}$ by γ and observe that the above minimization problem is equivalent to the minimization of $\frac{1}{2}\left[z_{1}^{2}+z_{2}^{2}+\gamma\left(z_{1}+z_{2}\right)^{2}+z_{1} z_{2}\right]-b_{1} z_{1}-b_{2} z_{2}-\left|b_{3}\right|\left(\gamma\left(z_{1}+z_{2}\right)^{2}+z_{1} z_{2}\right)^{1 / 2}$ over the subset of \mathbf{R}^{2} defined by $\left\{\left\{z_{1}, z_{2}\right\} \mid z_{1}+z_{2} \leqslant 0, \gamma\left(z_{1}+z_{2}\right)^{2}+z_{1} z_{2} \geqslant 0\right\}$ (completed by $\left.z_{3}=\operatorname{sign}\left(b_{3}\right)\left(\gamma\left(z_{1}+z_{2}\right)^{2}+z_{1} z_{2}\right)^{1 / 2}\right)$.
(ii) Take $z_{1}=\rho \cos \theta, z_{2}=\rho \sin \theta$, with $\rho \geqslant 0$ and $\theta \in[0,2 \pi)$. There is equivalence between the minimization problem in (i) and the maximization problem below

$$
\begin{equation*}
\max _{\theta \in K_{\theta}} F(\theta), \tag{22}
\end{equation*}
$$

with $F(\theta)=\left[b_{1} \cos \theta+b_{2} \sin \theta+\left|b_{3}\right|\left[\gamma+\left(\frac{1}{2}+\gamma\right) \sin 2 \theta\right]^{1 / 2}\right] /\left[1+\gamma+\left(\frac{1}{2}+\gamma\right) \sin 2 \theta\right]^{1 / 2}, K_{\theta}=\left[\pi-\frac{1}{2} \varphi_{c}, \frac{3 \pi}{2}+\frac{1}{2} \varphi_{c}\right]$ and $\varphi_{c}=\sin ^{-1}[2 \gamma /(2 \gamma+1)]$. Let denote by θ_{M} the solution of problem (22); if $F\left(\theta_{M}\right) \leqslant 0$, the solution of the minimization problem (i) is $\{0,0,0\}$. If $F\left(\theta_{M}\right)>0$, the solution of the above problem is $\mathbf{z}=\left\{z_{1 M}, z_{2 M}, z_{3 M}\right\}$ with $z_{1 M}=\rho_{M} \cos \theta_{M}, z_{2 M}=\rho_{M} \sin \theta_{M}, z_{3 M}=\operatorname{sign}\left(b_{3}\right)\left[\gamma\left(z_{1 M}+z_{2 M}\right)^{2}+z_{1 M} z_{2 M}\right]^{1 / 2}, \rho_{M}$ being given by $\rho_{M}=\left[b_{1} \cos \theta_{M}+b_{2} \sin \theta_{M}+\left|b_{3}\right|\left[\gamma+\left(\frac{1}{2}+\gamma\right) \sin 2 \theta_{M}\right]^{1 / 2}\right] /\left[1+\gamma+\left(\frac{1}{2}+\gamma\right) \sin 2 \theta_{M}\right]$. To solve the maximization problem (22) we used the derivative-free methods discussed in [1].

6. On the initialization of algorithm (14)-(16)

Concerning the initialization of algorithm (14)-(16) (and (17)-(20)) an obvious choice is provided by $-\Delta \psi^{0}=0$ in $\Omega, \psi^{0}=g$ on Γ, followed by $\mathbf{p}^{0}=D^{2} \psi^{0}$. A more sophisticated one (inspired by relation (1)) is the following: (i) Solve the following Poisson problem: $-\Delta \psi^{-1}=0$ in $\Omega, \psi^{-1}=g$ on Γ, and define \mathbf{p}^{-1} by $\mathbf{p}^{-1}=D^{2} \psi^{-1}$. (ii) Solve $-\Delta \psi^{0}=2[(\alpha-1) /(\alpha+1)] \sqrt{\left|\operatorname{det} \mathbf{p}^{-1}\right|}$ in $\Omega, \psi^{0}=g$ on Γ and define \mathbf{p}^{0} by $\mathbf{p}^{0}=D^{2} \psi^{0}$.

7. Numerical experiments

Problem (PE-D), (2) being clearly of the Monge-Ampère type (albeit more complicated) we have used to approximate it the mixed finite element method discussed in [4-6]. Moreover, the results presented below have been obtained by a discrete variant of algorithm (17)-(20), since, on the basis of numerical experiments, this algorithm appears more robust and faster than (14)-(16). For the two families of test problems discussed below we have taken $\Omega=(0,1) \times(0,1)$ and defined the mixed finite element approximation, mentioned just above, from uniform triangulations, like those used in [4] and [5]. The first family of test problems is motivated by Section 2; for $\alpha \in[2,3]$ we consider those particular cases of problem (PE-D), (2) where the function g is the trace on Γ of the function $x \rightarrow-\rho^{1-\alpha}$ with $\rho=\left[\left(x_{1}+1\right)^{2}+\left(x_{2}+1\right)^{2}\right]^{1 / 2}$. The above problem has $\psi=-\rho^{1-\alpha}$ as exact solution; we clearly
have $\psi \in C^{\infty}(\bar{\Omega})$. Applying to problem (PE-D), (2) the solution method briefly discussed in the preceding sections we obtain the results shown in Table 1.

In Table $1, n_{\text {it }}$ denotes the number of iterations necessary to achieve convergence, the corresponding stopping criterion being $\left\|D_{h}^{2} \psi_{h}^{n}-\mathbf{p}_{h}^{n}\right\|_{0, \Omega} \leqslant \epsilon$ (with $\|\cdot\|_{0, \Omega}$ denoting the $L^{2}(\Omega)$-norm, the other notation being obvious);

Table 1
First test problem: convergence of the approximate solutions

α	h	τ	$n_{\text {it }}$	$\left\\|\psi_{h}^{c}-\psi\right\\|_{0, \Omega}$	$\left\\|D_{h}^{2} \psi_{h}^{c}-\mathbf{p}_{h}^{c}\right\\|_{0, \Omega}$
2	$1 / 32$	10	74	0.1346×10^{-4}	0.8964×10^{-6}
2	$1 / 64$	10	81	0.3370×10^{-5}	0.9051×10^{-6}
2	$1 / 128$	10	83	0.8435×10^{-6}	0.9625×10^{-6}
2	$1 / 32$	100	63	0.1347×10^{-4}	0.9112×10^{-6}
2	$1 / 64$	100	69	0.3371×10^{-5}	0.9263×10^{-6}
2	$1 / 128$	100	71	0.8443×10^{-6}	0.9520×10^{-6}
2.5	$1 / 32$	10	159	0.4112×10^{-4}	0.9483×10^{-6}
2.5	$1 / 64$	10	194	0.1029×10^{-4}	0.9956×10^{-6}
2.5	$1 / 128$	10	211	0.2577×10^{-5}	0.9705×10^{-6}
2.5	$1 / 32$	100	135	0.4112×10^{-4}	0.9733×10^{-6}
2.5	$1 / 64$	100	166	0.1029×10^{-4}	0.9624×10^{-6}
2.5	$1 / 128$	100	180	0.2577×10^{-5}	0.9609×10^{-6}
3	$1 / 32$	10	377	0.1027×10^{-3}	0.9992×10^{-6}
3	$1 / 64$	10	672	0.2569×10^{-4}	0.9967×10^{-6}
3	$1 / 32$	100	321	0.1027×10^{-3}	0.9818×10^{-6}
3	$1 / 64$	100	570	0.2569×10^{-4}	0.9991×10^{-6}

Table 2
Second test problem: summary of numerical results

α	h	τ	n_{it}	$\left\\|D_{h}^{2} \psi_{h}^{c}-\mathbf{p}_{h}^{c}\right\\|_{0, \Omega} /\left\\|\mathbf{p}_{h}^{c}\right\\|_{0, \Omega}$
2	$1 / 32$	10	67	0.9992×10^{-5}
2	$1 / 64$	10	70	0.9590×10^{-5}
2	$1 / 128$	10	75	0.9831×10^{-5}
2.5	$1 / 32$	10	158	0.9872×10^{-5}
2.5	$1 / 64$	10	167	0.9801×10^{-5}
2.5	$1 / 128$	10	168	0.9894×10^{-5}
3	$1 / 32$	10	978	0.9996×10^{-5}
3	$1 / 64$	10	1000	0.7865×10^{-4}
3	$1 / 128$	10	1000	0.8120×10^{-4}

Fig. 1. 2nd test problem: (a) $(\alpha=1, h=1 / 128, \tau=10)$; (b) $(\alpha=2, h=1 / 128, \tau=10)$; (c) $(\alpha=3, h=1 / 128, \tau=10)$.

Fig. 2. Graph of ψ_{h}^{c} restricted to (a) $x_{1}=1 / 2$; (b) $x_{1}=x_{2},(\alpha=2.5, h=1 / 32,1 / 64,1 / 128)$.
$\left\{\psi_{h}^{c}, \mathbf{p}_{h}^{c}\right\}$ denotes the computed approximation of $\{\psi, \mathbf{p}\}$. We took $\epsilon=10^{-6}$. The results displayed in Table 1 call for several comments: (i) The larger τ, the faster the convergence of the iterative method, but the speed of convergence does not improve much as τ increases; similarly, the number of iterations necessary to achieve convergence does not depend much of h, for a given ϵ. (ii) For this test problem, we clearly have $\left\|\psi_{h}-\psi\right\|_{0, \Omega}=\mathrm{O}\left(h^{2}\right)$. (iii) The speed of convergence deteriorates as α increases; this is not surprising, since close to a solution of problem (2), the (MongeAmpère) operator $\varphi \rightarrow \operatorname{det} D^{2} \varphi$ is a nonlinear hyperbolic one whose importance, relative to the operator $\varphi \rightarrow|\Delta \varphi|^{2}$, increases with α, making the problem more difficult to solve.

The second family of test problems corresponds to g defined by $g(x)=0$ if $x \in \bigcup_{i=1}^{4} \Gamma_{i}, g(x)=1$ elsewhere on Γ, with $\Gamma_{1}=\left\{x \mid x=\left\{x_{1}, x_{2}\right\}, 1 / 4<x_{1}<3 / 4, x_{2}=0\right\}, \Gamma_{2}=\left\{x \mid x=\left\{x_{1}, x_{2}\right\}, x_{1}=1,1 / 4<x_{2}<3 / 4\right\}$, $\Gamma_{3}=\left\{x \mid x=\left\{x_{1}, x_{2}\right\}, 1 / 4<x_{1}<3 / 4, x_{2}=1\right\}$, and $\Gamma_{4}=\left\{x \mid x=\left\{x_{1}, x_{2}\right\}, x_{1}=0,1 / 4<x_{2}<3 / 4\right\}$. The above function $g \notin H^{3 / 2}(\Gamma)$ by far (actually, $g \notin H^{1 / 2}(\Gamma)$), implying that the corresponding (PE-D) problem has no solution in $H^{2}(\Omega)$. In order to overcome this difficulty we approximate g by g_{δ} defined as follows on the edge $\{x \mid x=$ $\left.\left\{x_{1}, x_{2}\right\}, 0 \leqslant x_{1} \leqslant 1, x_{2}=0\right\}$ of $\Omega: g_{\delta}=1$, if $0 \leqslant x_{1} \leqslant 1 / 4-\delta$ or $3 / 4+\delta \leqslant x_{1} \leqslant 1, g_{\delta}=0$, if $1 / 4+\delta \leqslant x_{1} \leqslant 3 / 4-\delta$, $g_{\delta}=\cos ^{2}\left[1 / 4\left(x_{1}-1 / 4+\delta\right)(\pi / \delta)\right]$ if $1 / 4-\delta \leqslant x_{1} \leqslant 1 / 4+\delta, g_{\delta}=\cos ^{2}\left[1 / 4\left(x_{1}-3 / 4-\delta\right)(\pi / \delta)\right]$ if $3 / 4-\delta \leqslant x_{1} \leqslant$ $3 / 4+\delta$, and similarly on the three other edges; above, δ is a 'small' positive parameter. The function g_{δ} is clearly in $H^{3 / 2}(\Gamma)$. Applying the methodology of the above sections leads - if $\delta=1 / 16$ - to the results summarized in Table 2 and visualized in Figs. 1 and 2 (with - , $-\cdot-\cdot-$, and --- corresponding to $h=1 / 32,1 / 64$, and $1 / 128$, respectively). The solution is clearly an increasing function of α and the convergence of ψ_{h} to a limit ψ as $h \rightarrow 0$ is clear from Fig. 2.

Acknowledgements

The authors thank L.A. Caffarelli for introducing them to the Pucci's equation and some of its fascinating properties. The support of NSF (Grant DMS-0209066) is also acknowledged.

References

[1] R.P. Brent, Algorithms for Minimization without Derivatives, Dover Publications, Mineola, NY, 2002.
[2] X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations, Discrete and Continuous Dynamical Systems 8 (2) (2002) 289-302.
[3] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, RI, 1995.
[4] E.J. Dean, R. Glowinski, Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: a least squares approach, C. R. Acad. Sci. Paris, Ser. I 339 (12) (2004) 887-892.
[5] E.J. Dean, R. Glowinski, Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779-784.
[6] E.J. Dean, R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type, Comput. Methods Appl. Mech. Engrg., in press.

[^0]: E-mail addresses: dean@math.uh.edu (E.J. Dean), roland@math.uh.edu (R. Glowinski).
 1631-073X/\$ - see front matter © 2005 Published by Elsevier SAS on behalf of Académie des sciences.
 doi:10.1016/j.crma.2005.08.002

