

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 341 (2005) 207-210

http://france.elsevier.com/direct/CRASS1/

Number Theory

Finiteness of Abelian fundamental groups with restricted ramification

Toshiro Hiranouchi

Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan Received 2 May 2005; accepted after revision 28 June 2005 Available online 3 August 2005 Presented by Michel Raynaud

Abstract

We define a certain quotient of the étale fundamental group of a scheme which classifies étale coverings with bounded ramification along the boundary, and show the finiteness of the abelianization of this group for an arithmetic scheme. *To cite this article: T. Hiranouchi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Finitude des groupes fondamentaux abéliens avec ramification bornée. Nous définissons un certain quotient du groupe fondamental étale d'un schéma qui classifie les revêtements étales à ramification bornée le long du bord, et démontrons la finitude de ce groupe rendu abélien pour un schéma arithmétique. *Pour citer cet article : T. Hiranouchi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let *X* be a connected normal Noetherian scheme, *D* an effective Weil divisor of *X* and *I* the set of irreducible components of *D*. Put $Q := \{a, a+ | a \in \mathbb{Q}_{\geq 1}\}$, where a+ is just a formal symbol. For any $\underline{a} = (a_1, \ldots, a_r) \in Q^I$, we define a fundamental group $\pi_1^a(X, D)$ which is a quotient of the étale fundamental group $\pi_1(X \setminus D)$. It classifies coverings of *X* which are étale over $X \setminus D$ and of ramification bounded by \underline{a} along *D* (see Definition 2.3 below). If the scheme *X* is regular, then $\pi_1^1(X, D) = \pi_1(X)$ for $\underline{1} := (1, \ldots, 1)$. For a general *X*, we have $\pi_1^{\underline{1+}}(X, D) = \pi_1^{\operatorname{tame}}(X, D)$ for $\underline{1+} := (1+, \ldots, 1+)$, where $\pi_1^{\operatorname{tame}}(X, D)$ is the tame fundamental group defined in Exposé XIII

E-mail address: hiranouchi@math.kyushu-u.ac.jp (T. Hiranouchi).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2005.07.001

of [3]. To define $\pi_1^a(X, D)$, we employ the ramification filtration defined by Abbes and Saito in [1]. Our main theorem is the following.

Theorem 1.1. Let k be a finite extension of \mathbb{Q} and X a normal scheme of finite type and faithfully flat over the ring of integers \mathcal{O} of k whose geometric generic fiber $X \otimes_{\mathcal{O}} \bar{k}$ is connected. Then, the abelianized fundamental group $\pi_1^{\underline{a}}(X, D)^{ab}$ is finite for any effective Weil divisor D of X and $\underline{a} \in \mathcal{Q}^I$.

The above theorem is a generalization of the finiteness result in [6] proved by Katz and Lang for étale fundamental groups, and the recent result in [7] of Schmidt for tame fundamental groups.

Throughout this Note, we assume that all schemes are Noetherian. For any scheme X, we denote by \mathcal{O}_X its structure sheaf. For any field K, we denote by K^{sep} the maximal separable extension of K within a given algebraic closure \overline{K} of K. Finally, we assume that any separable extension of K is contained in K^{sep} .

2. Fundamental groups with restricted ramification

Let *K* be a complete discrete valuation field, and G_K the absolute Galois group of *K*. Using techniques of rigid geometry, Abbes and Saito [1] defined a decreasing filtration $(G_K^a)_{a \in \mathbb{Q}_{\geq 0}}$ by closed normal subgroups G_K^a of G_K . The filtration coincides with the classical upper numbering ramification filtration shifted by one, if the residue field of *K* is perfect (see [8], §IV.3 for the classical case). We define G_K^{a+} to be the topological closure of $\bigcup_{b>a} G_K^b$, where *b* denotes a rational number. In particular, G_K^1 is the inertia subgroup of G_K , and G_K^{1+} is the wild inertia subgroup of G_K .

Definition 2.1. Let L/K be a separable extension. For any $a \in Q$, we say that the *ramification of* L/K *is bounded* by a if $G_K^a \subset G_{\tilde{L}}$, where \tilde{L} is the Galois closure of L/K.

This definition is compatible with Definition 6.3 of [1]. Basic properties of the filtration $(G_K^a)_{a \in \mathbb{Q}_{\geq 0}}$ imply the following assertions:

Lemma 2.2. Let L/K and L'/K be separable extensions which have ramification bounded by $a \in Q$.

- (1) For any subextension M/K of L/K, the ramification of M/K is bounded by a.
- (2) The ramification of the composite field LL'/K is bounded by a.

Let *X* be a connected normal scheme and *Y* a normal scheme. We say that a generically étale morphism $Y \to X$ is a *covering* of *X* if it is finite and every irreducible component of *Y* dominates *X*. Let *D* be an effective Weil divisor of *X* and ξ_1, \ldots, ξ_r the generic points of the irreducible components of *D*. Then, the local ring \mathcal{O}_{X,ξ_i} is a discrete valuation ring inducing a discrete valuation v_i on the function field k(X) of *X*. We denote by $(\mathcal{O}_{X,\xi_i})^{\wedge}$ its completion with respect to v_i . Let $Y' := Y \times_X \operatorname{Spec}((\mathcal{O}_{X,\xi_i})^{\wedge})$. If the covering $Y \to X$ is étale over $X \setminus D$, the total ring of quotients of $\Gamma(Y', \mathcal{O}_{Y'})$ is a finite direct sum of complete discrete valuation fields L_{ij} which are finite separable extensions of the fraction field K_i of $(\mathcal{O}_{X,\xi_i})^{\wedge}$.

Definition 2.3. Let the notation be as above, and let $\underline{a} = (a_1, \ldots, a_r) \in Q^I$. The covering $Y \to X$ is said to be of *ramification bounded by* \underline{a} along D, if it is étale over $X \setminus D$ and, for each $i = 1, \ldots, r$, the ramification of the extensions L_{ij}/K_i is bounded by a_i for all j.

By the above definition, a covering $Y \to X$ is of ramification bounded by $\underline{1} := (1, ..., 1)$ along *D* if and only if it is étale above points in *D* of codimension 1 and étale above over $X \setminus D$. Similarly, the ramification of a covering $Y \to X$ is bounded by $\underline{1+} := (1+, ..., 1+)$ along *D* if and only if it is tamely ramified along *D* in the sense of

Definition 2.2.2 in [4]. Note, however, that this may not be true if we adopt Schmidt's definition of a tame covering (cf. [4], Example 1.3).

In the same way as in Lemma 2.2.5 of [4], we can see that Lemma 2.2 (1) implies the following assertion:

Lemma 2.4. Let $f: Y \to X$ be a covering, and let $g: Z \to Y$ be a surjective covering. If the ramification of $f \circ g: Z \to X$ is bounded by <u>a</u> along D, then so is f.

Let $\mathbf{Cov}^{\acute{et}}(X)$ be the category of étale coverings of X, and $\mathbf{Cov}^{\underline{a}}(X, D)$ the category of coverings of X which have ramification bounded by a along D. The category $\mathbf{Cov}^{\acute{et}}(X)$ is a full subcategory of $\mathbf{Cov}^{\underline{a}}(X, D)$.

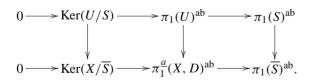
As in the proof of Theorem 2.4.2 in [4], Lemmas 2.2(2) and 2.4 imply the existence of fiber products and quotients respectively in the category $\mathbf{Cov}^{\underline{a}}(X, D)$. Choose a point $x \in X$ which is not in D, and take a geometric point $\xi : \operatorname{Spec} \Omega \to x$, where Ω is a separably closed extension of the residue field at x. We define a fiber functor \mathcal{F} by $\mathcal{F}(Y) = \operatorname{Hom}_X(\operatorname{Spec} \Omega, Y)$ for any $Y \in \operatorname{Cov}^{\underline{a}}(X, D)$. Then, we can prove the following theorem:

Theorem 2.5. The category $\mathbf{Cov}^{\underline{a}}(X, D)$ together with the fiber functor \mathcal{F} is a Galois category.

Now, we define our fundamental group $\pi_1^a(X, D; \xi)$ (or simply $\pi_1^a(X, D)$) to be the fundamental group of this Galois category (cf. Théorème 4.1 in Exposé V of [3]). From Proposition 6.9 in Exposé V of [3], we have the following surjective homomorphisms: $\pi_1(X \setminus D) \to \pi_1^a(X, D) \to \pi_1(X)$. The category $\mathbf{Cov}^{1+}(X, D)$ is the category of tamely ramified coverings of X along D, and we have $\pi_1^{1+}(X, D) = \pi_1^{\mathrm{tame}}(X, D)$. If we assume the scheme X is regular, the theorem of Zariski–Nagata on the purity of the branch locus (cf. [3], Exposé X, Théorème 3.1) implies $\mathbf{Cov}^1(X, D) = \mathbf{Cov}^{\mathrm{\acute{e}t}}(X)$ and hence $\pi_1^1(X, D) = \pi_1(X)$.

3. Proof of Theorem 1.1

We basically follow the proof of Schmidt's theorem (cf. [7], Theorem 3.1). For any open subscheme V of $U := X \setminus D$ such that $X \setminus V$ is an effective Weil divisor, there exists a surjective homomorphism $\pi_1^{\underline{b}}(X, X \setminus V) \rightarrow \pi_1^{\underline{a}}(X, D)$ for some $\underline{b} \in Q^J$ and $J \supset I$. Therefore, shrinking U if necessary, we may assume that U is smooth over $\overline{S} :=$ Spec \mathcal{O} . Let $S \subset \overline{S}$ be the image of U. There are a surjective homomorphism $\pi_1(U) \rightarrow \pi_1^{\underline{a}}(X, D)$ and a natural homomorphism $\pi_1^{\underline{a}}(X, D) \rightarrow \pi_1(\overline{S})$. Consider the following commutative diagram:



Here, the groups $\operatorname{Ker}(U/S)$ and $\operatorname{Ker}(X/\overline{S})$ are defined by the exactness of the corresponding rows, and the two right vertical homomorphisms are surjective. By the classical class field theory, the group $\pi_1(\overline{S})^{ab}$ is finite, and the kernel of the homomorphism $\pi_1(S)^{ab} \to \pi_1(\overline{S})^{ab}$ is topologically finitely generated. In addition to this, the group $\operatorname{Ker}(U/S)$ is finite by Theorem 1 of [6]. Since $\pi_1(U)^{ab}$ and $\pi_1^a(X, D)^{ab}$ are topologically finitely generated Abelian groups, it is enough to show that $\operatorname{Ker}(X/\overline{S})$ is torsion. Furthermore, it is known that $\pi_1(U)^{ab} \to \pi_1(S)^{ab}$ is surjective by Lemma 2(2) of [6]. By the snake lemma, it is sufficient to show that the cokernel *C* of $\operatorname{Ker}(U/S) \to$ $\operatorname{Ker}(X/\overline{S})$ is torsion.

Let *K* be the function field of *X*, and *k'* the maximal Abelian extension of *k* such that the normalization $X_{Kk'}$ of *X* in *Kk'* is of ramification bounded by <u>*a*</u> along *D*. This is equivalent to saying that *k'* is the compositum of all the finite extensions of *k* which appear as the fraction fields of the integral closures of *S* in \mathcal{O}_Y for $Y \to X$

in **Cov**^{*a*}(*X*, *D*). Note that the normalization of *S* in *k'* is ind-étale. Let *k''* be the maximal subextension of k'/k such that the normalization $\overline{S}_{k''}$ of \overline{S} in *k''* is étale over \overline{S} . Then, $\operatorname{Gal}(k''/k) = \pi_1(\overline{S})^{ab}$ and, by the snake lemma, $C \simeq \operatorname{Gal}(k'/k'')$. To prove the assertion, it is sufficient to show k'/k'' does not contain a \mathbb{Z}_p -extension of k'' for any prime number *p*. Since k''/k is a finite extension and k'/k is Abelian, it is enough to show that k'/k does not contain a \mathbb{Z}_p -extension. So, we assume that k'/k contains a \mathbb{Z}_p -extension k_{∞}/k . A \mathbb{Z}_p -extension of *k* is unramified outside *p* and at least ramified at one prime p dividing *p* (cf. [5], §6, Lemma 4). Since the normalization of *S* in *k'* is ind-étale, $p \in \overline{S} \setminus S$. From the assumption, the prime p is in the image of $X \to \overline{S}$. By the definition of *k'*, the normalization of *X* in Kk_{∞} has ramification bounded by <u>a</u> along *D*. This carries over to the local situation, which contradicts the following lemma:

Lemma 3.1. Let *R* be a complete discrete valuation ring with fraction field *k* of characteristic 0 and perfect residue field of characteristic p > 0. Let *X* be a normal faithfully flat scheme of finite type over *R* whose geometric generic fiber is connected, and *D* a Weil divisor of *X* containing an irreducible component of the closed fiber $X_{\mathfrak{p}}$ of *X*. Then, for a ramified \mathbb{Z}_p -extension k_{∞} of *k*, the ramification of $X \otimes_{\mathcal{O}_k} \mathcal{O}_{k_{\infty}} \to X$ is not bounded along *D*.

For any point $\mathfrak{P} \in D \cap X_{\mathfrak{p}}$ of codimension 1, let *K* be the completion of the function field k(X) at \mathfrak{P} . We assume the ramification of Kk_{∞}/K is bounded by some $a \in \mathbb{Q}$. By Theorem 1.9 of [2], there exists a finite extension \tilde{k}/k such that the extension $K\tilde{k}$ over \tilde{k} is *weakly unramified*, i.e., a uniformizing element of \tilde{k} is a uniformizing element of $K\tilde{k}$. Lemma 6.5 of [1] implies the ramification of the composite field $K\tilde{k}k_{\infty}$ over $K\tilde{k}$ is bounded by ae, where eis the ramification index of $K\tilde{k}/K$. Changing the base field from k to \tilde{k} , we shall consider the problem over \tilde{k} ; thus we write k, k_{∞}, K , etc., instead of $\tilde{k}, \tilde{k}k_{\infty}, \tilde{k}K$, etc. Hence, the extension K/k is regular and weakly unramified. Replacing k by the maximal unramified subextension of k_{∞}/k , we may suppose k_{∞}/k is totally ramified. Let k_n be the unique subextension of k_{∞}/k such that the extension degree is p^n over k. Since the extension K/k is regular, we have $Gal(Kk_n/K) \simeq Gal(k_n/k)$, and $K \otimes_k k_n \simeq Kk_n$. Then, an Eisenstein polynomial $f \in \mathcal{O}_k[T]$ for the extension k_n/k remains to be Eisenstein over K, and we have $\mathcal{O}_{Kk_n} = \mathcal{O}_K[T]/(f)$. In this case, the differents $\mathfrak{D}_{k_n/k}$ of k_n/k and $\mathfrak{D}_{Kk_n/K}$ of Kk_n/K are both generated by $f'(\pi_n)$ for some uniformizing element π_n of k_n , and we have $v_k(\mathfrak{D}_{k_n/k}) = v_K(\mathfrak{D}_{Kk_n/K})$, where v_k, v_K are the normalized valuations of k, K, respectively. Lemma 6.6 of [1] says that, if the ramification of Kk_n/K is bounded by $a \in \mathbb{Q}$, then $a > v_K(\mathfrak{D}_{Kk_n/K})$. However, $v_k(\mathfrak{D}_{k_n/k})$ tends to infinity as $n \to \infty$ (cf. [9], §3, Proposition 5).

References

- [1] A. Abbes, T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (5) (2002) 879-920.
- [2] H.P. Epp, Eliminating wild ramification, Invent. Math. 19 (1973) 235-249.
- [3] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), in: Séminaire de Géométrie Algébrique du Bois-Marie 1960–1961, in: Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin, 1971.
- [4] A. Grothendieck, J.P. Murre, The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Lecture Notes in Math., vol. 208, Springer-Verlag, Berlin, 1971.
- [5] K. Iwasawa, On \mathbb{Z}_l -extensions of algebraic number fields, Ann. of Math. (2) 98 (1973) 246–326.
- [6] N.M. Katz, S. Lang, Finiteness theorems in geometric class field theory, Enseign. Math. (2) 27 (3–4) (1981) 285–319 (with an appendix by Kenneth A. Ribet).
- [7] A. Schmidt, Tame coverings of arithmetic schemes, Math. Ann. 322 (1) (2002) 1–18.
- [8] J.-P. Serre, Corps locaux, Deuxième édition, Publications de l'Université de Nancago, vol. VIII, Hermann, Paris, 1968.
- [9] J.T. Tate, p-Divisible groups, in: Proc. Conf. Local Fields, Driebergen, 1966, Springer, Berlin, 1967, pp. 158–183.