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Abstract

We define a certain quotient of the étale fundamental group of a scheme which classifies étale coverings with
ramification along the boundary, and show the finiteness of the abelianization of this group for an arithmetic schemeTo cite
this article: T. Hiranouchi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Finitude des groupes fondamentaux abéliens avec ramification bornée.Nous définissons un certain quotient du grou
fondamental étale d’un schéma qui classifie les revêtements étales à ramification bornée le long du bord, et dém
finitude de ce groupe rendu abélien pour un schéma arithmétique.Pour citer cet article : T. Hiranouchi, C. R. Acad. Sci. Paris,
Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be a connected normal Noetherian scheme,D an effective Weil divisor ofX andI the set of irreducible
components ofD. PutQ := {a, a+ | a ∈ Q�1}, wherea+ is just a formal symbol. For anya = (a1, . . . , ar ) ∈ QI ,
we define a fundamental groupπa

1 (X,D) which is a quotient of the étale fundamental groupπ1(X\D). It classifies
coverings ofX which are étale overX \ D and of ramification bounded bya alongD (see Definition 2.3 below)

If the schemeX is regular, thenπ1
1(X,D) = π1(X) for 1 := (1, . . . ,1). For a generalX, we haveπ

1+
1 (X,D) =

π tame
1 (X,D) for 1+ := (1+, . . . ,1+), whereπ tame

1 (X,D) is the tame fundamental group defined in Exposé X
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of [3]. To defineπ
a

1 (X,D), we employ the ramification filtration defined by Abbes and Saito in [1]. Our m
theorem is the following.

Theorem 1.1.Letk be a finite extension ofQ andX a normal scheme of finite type and faithfully flat over the r
of integersO of k whose geometric generic fiberX ⊗O k̄ is connected. Then, the abelianized fundamental gr
π

a

1 (X,D)ab is finite for any effective Weil divisorD of X anda ∈ QI .

The above theorem is a generalization of the finiteness result in [6] proved by Katz and Lang for étale
mental groups, and the recent result in [7] of Schmidt for tame fundamental groups.

Throughout this Note, we assume that all schemes are Noetherian. For any schemeX, we denote byOX its
structure sheaf. For any fieldK , we denote byKsepthe maximal separable extension ofK within a given algebraic
closure�K of K . Finally, we assume that any separable extension ofK is contained inKsep.

2. Fundamental groups with restricted ramification

Let K be a complete discrete valuation field, andGK the absolute Galois group ofK . Using techniques of rigid
geometry, Abbes and Saito [1] defined a decreasing filtration(Ga

K)a∈Q�0 by closed normal subgroupsGa
K of GK .

The filtration coincides with the classical upper numbering ramification filtration shifted by one, if the residu
of K is perfect (see [8], §IV.3 for the classical case). We defineGa+

K to be the topological closure of
⋃

b>a Gb
K ,

whereb denotes a rational number. In particular,G1
K is the inertia subgroup ofGK , andG1+

K is the wild inertia
subgroup ofGK .

Definition 2.1.Let L/K be a separable extension. For anya ∈Q, we say that theramification ofL/K is bounded
bya if Ga

K ⊂ G
L̃

, whereL̃ is the Galois closure ofL/K .

This definition is compatible with Definition 6.3 of [1]. Basic properties of the filtration(Ga
K)a∈Q�0 imply the

following assertions:

Lemma 2.2.LetL/K andL′/K be separable extensions which have ramification bounded bya ∈ Q.
(1) For any subextensionM/K of L/K , the ramification ofM/K is bounded bya.
(2) The ramification of the composite fieldLL′/K is bounded bya.

Let X be a connected normal scheme andY a normal scheme. We say that a generically étale morphismY → X

is a coveringof X if it is finite and every irreducible component ofY dominatesX. Let D be an effective Wei
divisor of X andξ1, . . . , ξr the generic points of the irreducible components ofD. Then, the local ringOX,ξi

is a
discrete valuation ring inducing a discrete valuationvi on the function fieldk(X) of X. We denote by(OX,ξi

)∧
its completion with respect tovi . Let Y ′ := Y ×X Spec((OX,ξi

)∧). If the coveringY → X is étale overX \ D, the
total ring of quotients ofΓ (Y ′,OY ′) is a finite direct sum of complete discrete valuation fieldsLij which are finite
separable extensions of the fraction fieldKi of (OX,ξi

)∧.

Definition 2.3. Let the notation be as above, and leta = (a1, . . . , ar ) ∈ QI . The coveringY → X is said to be
of ramification bounded bya alongD, if it is étale overX \ D and, for eachi = 1, . . . , r , the ramification of the
extensionsLij /Ki is bounded byai for all j .

By the above definition, a coveringY → X is of ramification bounded by 1:= (1, . . . ,1) alongD if and only if
it is étale above points inD of codimension 1 and étale above overX \ D. Similarly, the ramification of a coverin
Y → X is bounded by 1+ := (1+, . . . ,1+) alongD if and only if it is tamely ramified alongD in the sense o
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Definition 2.2.2 in [4]. Note, however, that this may not be true if we adopt Schmidt’s definition of a tame co
(cf. [4], Example 1.3).

In the same way as in Lemma 2.2.5 of [4], we can see that Lemma 2.2 (1) implies the following assertio

Lemma 2.4. Let f :Y → X be a covering, and letg :Z → Y be a surjective covering. If the ramification
f ◦ g :Z → X is bounded bya alongD, then so isf .

Let Covét(X) be the category of étale coverings ofX, andCova(X,D) the category of coverings ofX which
have ramification bounded bya alongD. The categoryCovét(X) is a full subcategory ofCova(X,D).

As in the proof of Theorem 2.4.2 in [4], Lemmas 2.2(2) and 2.4 imply the existence of fiber produc
quotients respectively in the categoryCova(X,D). Choose a pointx ∈ X which is not inD, and take a geometri
point ξ : SpecΩ → x, whereΩ is a separably closed extension of the residue field atx. We define a fiber functo
F by F(Y ) = HomX(SpecΩ,Y) for anyY ∈ Cova(X,D). Then, we can prove the following theorem:

Theorem 2.5.The categoryCova(X,D) together with the fiber functorF is a Galois category.

Now, we define our fundamental groupπa

1 (X,D; ξ) (or simply π
a

1 (X,D)) to be the fundamental group o
this Galois category (cf. Théorème 4.1 in Exposé V of [3]). From Proposition 6.9 in Exposé V of [3], we
the following surjective homomorphisms:π1(X \ D) → π

a

1 (X,D) → π1(X). The categoryCov1+(X,D) is the

category of tamely ramified coverings ofX alongD, and we haveπ
1+
1 (X,D) = π tame

1 (X,D). If we assume the
schemeX is regular, the theorem of Zariski–Nagata on the purity of the branch locus (cf. [3], Exposé X, T
me 3.1) impliesCov1(X,D) = Covét(X) and henceπ1

1(X,D) = π1(X).

3. Proof of Theorem 1.1

We basically follow the proof of Schmidt’s theorem (cf. [7], Theorem 3.1). For any open subschemeV of
U := X \ D such thatX \ V is an effective Weil divisor, there exists a surjective homomorphismπ

b

1 (X,X \ V ) →
π

a

1 (X,D) for someb ∈ QJ andJ ⊃ I . Therefore, shrinkingU if necessary, we may assume thatU is smooth
over�S := SpecO. Let S ⊂ �S be the image ofU . There are a surjective homomorphismπ1(U) → π

a

1 (X,D) and a
natural homomorphismπa

1 (X,D) → π1(�S). Consider the following commutative diagram:

0 Ker(U/S) π1(U)ab π1(S)ab

0 Ker(X/�S) π
a

1 (X,D)ab π1(�S)ab.

Here, the groups Ker(U/S) and Ker(X/�S) are defined by the exactness of the corresponding rows, and th
right vertical homomorphisms are surjective. By the classical class field theory, the groupπ1(�S)ab is finite, and
the kernel of the homomorphismπ1(S)ab → π1(�S)ab is topologically finitely generated. In addition to this, t
group Ker(U/S) is finite by Theorem 1 of [6]. Sinceπ1(U)ab andπ

a

1 (X,D)ab are topologically finitely generate
Abelian groups, it is enough to show that Ker(X/�S) is torsion. Furthermore, it is known thatπ1(U)ab→ π1(S)ab is
surjective by Lemma 2(2) of [6]. By the snake lemma, it is sufficient to show that the cokernelC of Ker(U/S) →
Ker(X/�S) is torsion.

Let K be the function field ofX, andk′ the maximal Abelian extension ofk such that the normalizationXKk′
of X in Kk′ is of ramification bounded bya alongD. This is equivalent to saying thatk′ is the compositum o
all the finite extensions ofk which appear as the fraction fields of the integral closures ofS in O for Y → X
Y
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in Cova(X,D). Note that the normalization ofS in k′ is ind-étale. Letk′′ be the maximal subextension ofk′/k

such that the normalization�Sk′′ of �S in k′′ is étale over�S. Then, Gal(k′′/k) = π1(�S)ab and, by the snake lemm
C 
 Gal(k′/k′′). To prove the assertion, it is sufficient to showk′/k′′ does not contain aZp-extension ofk′′ for
any prime numberp. Sincek′′/k is a finite extension andk′/k is Abelian, it is enough to show thatk′/k does not
contain aZp-extension. So, we assume thatk′/k contains aZp-extensionk∞/k. A Zp-extension ofk is unramified
outsidep and at least ramified at one primep dividing p (cf. [5], §6, Lemma 4). Since the normalization ofS in
k′ is ind-étale,p ∈ �S \ S. From the assumption, the primep is in the image ofX → �S. By the definition ofk′, the
normalization ofX in Kk∞ has ramification bounded bya alongD. This carries over to the local situation, whi
contradicts the following lemma:

Lemma 3.1.LetR be a complete discrete valuation ring with fraction fieldk of characteristic0 and perfect residue
field of characteristicp > 0. LetX be a normal faithfully flat scheme of finite type overR whose geometric gener
fiber is connected, andD a Weil divisor ofX containing an irreducible component of the closed fiberXp of X.
Then, for a ramifiedZp-extensionk∞ of k, the ramification ofX ⊗Ok

Ok∞ → X is not bounded alongD.

For any pointP ∈ D∩Xp of codimension 1, letK be the completion of the function fieldk(X) atP. We assume
the ramification ofKk∞/K is bounded by somea ∈ Q. By Theorem 1.9 of [2], there exists a finite extensionk̃/k

such that the extensionKk̃ over k̃ is weakly unramified, i.e., a uniformizing element of̃k is a uniformizing elemen
of Kk̃. Lemma 6.5 of [1] implies the ramification of the composite fieldKk̃k∞ overKk̃ is bounded byae, wheree
is the ramification index ofKk̃/K . Changing the base field fromk to k̃, we shall consider the problem overk̃; thus
we writek, k∞,K , etc., instead of̃k, k̃k∞, k̃K , etc. Hence, the extensionK/k is regular and weakly unramified
Replacingk by the maximal unramified subextension ofk∞/k, we may supposek∞/k is totally ramified. Let
kn be the unique subextension ofk∞/k such that the extension degree ispn over k. Since the extensionK/k is
regular, we have Gal(Kkn/K) 
 Gal(kn/k), andK ⊗k kn 
 Kkn. Then, an Eisenstein polynomialf ∈ Ok[T ] for
the extensionkn/k remains to be Eisenstein overK , and we haveOKkn = OK [T ]/(f ). In this case, the different
Dkn/k of kn/k andDKkn/K of Kkn/K are both generated byf ′(πn) for some uniformizing elementπn of kn, and
we havevk(Dkn/k) = vK(DKkn/K), wherevk, vK are the normalized valuations ofk,K , respectively. Lemma 6.
of [1] says that, if the ramification ofKkn/K is bounded bya ∈ Q, thena > vK(DKkn/K). However,vk(Dkn/k)

tends to infinity asn → ∞ (cf. [9], §3, Proposition 5).
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