Probability Theory

Riemannian connections and curvatures on the universal Teichmüller space

Hélène Airaulta,b

a INSET, université de Picardie, 48, rue Raspail, 02100 Saint-Quentin, France
b Laboratoire CNRS UMR 6140 LAMFA, 33, rue Saint-Leu, 80039 Amiens, France

Received 3 June 2005; accepted 20 June 2005
Available online 3 August 2005
Presented by Paul Malliavin

Abstract

We define Riemannian connections on the universal Teichmüller space U^∞. For the Levi-Civita’s connection on U^∞, the Riemannian curvature tensor is well defined and the Ricci curvature is finite. We obtain several series of infinite dimensional operators which converge. To cite this article: H. Airault, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

Résumé

Version française abrégée

Soit $\text{Diff}(S^1)$ le groupe des difféomorphismes du cercle qui pré servent l’orientation et soit \mathcal{H} le sous-groupe des transformations homographiques. Un difféomorphisme $e^{\gamma \theta}$ s’identifie avec l’application $\gamma : \theta \to \gamma(\theta)$ modulo 2π. Soit $\text{diff}(S^1)$ l’algèbre de Lie de $\text{Diff}(S^1)$. L’algèbre de Lie de \mathcal{H} est notée $\text{su}(1, 1)$, elle est engendrée par $\cos \theta$, $\sin \theta$, 1. Pour k un entier, $k \geq 0$, on pose $\alpha(k) = ak^3 + bk$ où $a \geq 0$ et b est un nombre réel. Sur l’espace vectoriel V des séries de Fourier $u(\theta) = \sum_{k \geq 0} a_k \cos(k\theta) + b_k \sin(k\theta)$ telles que $\|u\|^2 = \sum_{k \geq 1} (a_k^u)^2 \alpha(k) + (b_k^u)^2 \alpha(k) < +\infty$, on considère le produit scalaire

E-mail address: helene.airault@insset.u-picardie.fr (H. Airault).

1631-073X/$ – see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
séries formées par des opérateurs diagonaux dans la base orthonormale
La courbure de cette connexion est égale à celle de la connexion obtenue dans [6]. On étudie la convergence de
C^2.

(1)

Diffe (S^U) we introduce different Riemannian connections on S^U. Among them the Levi-Civita connection (4) which
commutes with the Hilbert transform J.

This leads to the Riemannian curvature and Ricci curvature of U^∞.

\[
(u|v) = \sum_{k \geq 1} a_k^u b_k^v \alpha(k) + b_k^u a_k^v \alpha(k).
\]

Comme $(\cdot|\cdot) = \sum_{k \geq 2} (a_k^u b_k^v - a_k^v b_k^u) k \alpha(k), on a (w'|u) = -(w|u')$. Pour $u, v, w \in V,$
\[
[u, v](\theta) = u(\theta)v'(\theta) - u'(\theta)v(\theta).
\]

Lorsque $\alpha(k) = k^3 - k$ et pour u, v, w dans le sous-espace vectoriel V_0 engendré par $\{\cos(k\theta); \sin(k\theta)\}_{k \geq 2}$, on démontre l’identité remarquable
\[
(Ju | [v, w]) + (Jv | [u, w]) + (Jw | [u, v]) = 0,
\]

où J est la transformation de Hilbert, $J \cos k\theta = \sin k\theta$ et $J \sin k\theta = -\cos k\theta, k \geq 1$. Soit π la projection de
diff(S^1) sur V_0. Lorsque $u, v, w \in$ diff(S^1), on définit la connexion de Levi-Civita sur le groupe quotient $\mathcal{H}/\text{Diff}(S^1)$ par (cf. [12, vol. 2, p. 201])
\[
\Gamma_{\mathcal{L}C}(u, v, w) = (\Gamma_{\mathcal{L}C}(v)u | w) = \frac{1}{2} [([u, v] | \pi v) + ([w, v] | \pi u) - ([u, v] | \pi w)].
\]

La courbure de cette connexion est égale à celle de la connexion obtenue dans [6]. On étudie la convergence de
séries formées par des opérateurs diagonaux dans la base orthonormale $[c_k = \cos(k\theta); s_k = \sin(k\theta)]_{k \geq 2}$ et issues de
différentes connexions. Soit $\Gamma_{\gamma}(v, u)[w, v]$. La série d’opérateurs $\sum_{j \geq 2} \Gamma_{\mathcal{L}C}(e_j)^2 + \Gamma_{\mathcal{L}C}(s_j)^2$ converge et la série
\[
A = \sum_{j \geq 2} (\Gamma_{\mathcal{L}C} + \Gamma_1)(e_j) \Gamma_{\mathcal{L}C}(e_j) + (\Gamma_{\mathcal{L}C} + \Gamma_1)(s_j) \Gamma_{\mathcal{L}C}(s_j)
\]
définit un opérateur de courbure borné.

1. Introduction

Among the difficulites of geometry in infinite dimension are the importance of a good choice of coordinate system
and the divergence of series associated to the operation of contraction. Infinite-dimensional geometry appears
naturally in Probability Theory [1,2,7] and in Mathematical Physics [6,5,11]. The universal Teichmüller space U^∞ is
the space of C^∞ Jordan curves of the complex plane. In our program, U^∞ will appear as the skeleton of canonical
probability measures which will be carried by a larger space than U^∞ (see [4,10]). To $\gamma \in U^\infty$, correspond
two univalent functions $f^+_{\gamma}, f^-_{\gamma}$ sending the inside and the outside of the unit disk on the two regions delimited
by γ; then $f^+_{\gamma}, f^-_{\gamma}$ are C^∞ functions on the circle S^1. Therefore, $f_{\gamma}(\theta) := ([f^+_{\gamma}]^{-1} \circ f^-_{\gamma}) \exp(i\theta)$ is a diffeomorphism of the circle. Denote Diff(S^1) the group of C^∞, orientation preserving diffeomorphisms of the circle. Let \mathcal{H} be the subgroup of Möbius transformations of the disk considered as operating on S^1; then $f^+_{\gamma}, f^-_{\gamma}$ are defined
up to a Möbius transformation. The previous construction defines an injective map $U^\infty \rightarrow \mathcal{H}/\text{Diff}(S^1)/\text{Rot}(S^1)$.
The Beurling–Ahlfors theory of conformal welding shows that this map is surjective. The Lie algebra diff(S^1) is the
set of C^∞ vector fields on the circle, they are identified with the C^∞ functions on the circle. The Lie algebra su(1, 1) of \mathcal{H} is the linear subspace of diff(S^1) having for basis 1, $\cos \theta, \sin \theta$. It has been shown in [3] that there exists a unique scalar product on diff(S^1) which is invariant under the adjoint action of su(1, 1). The associated
metric defines a canonical Riemannian structure on U^∞. An orthonormal basis for this metric at identity is
\[
\left\{ \frac{1}{\sqrt{k^3-k}} \cos k\theta, \frac{1}{\sqrt{k^3-k}} \sin k\theta \right\}, k > 1.
\]

(i) we prove the identity (3) which is specific to the metric $\alpha(k) = k^3 - k$,
(ii) we introduce different Riemannian connections on U^∞, among them the Levi-Civita connection (4) which
commutes with the Hilbert transform J.\[\]
2. The geometry of $\mathcal{H}\setminus\text{Diff}(S^1)$

We calculate on $\text{Diff}(S^1)$ modulo composition on the left by homographic transformations. Let $\gamma \in \text{Diff}(S^1)$ and $u(\theta) \in V$. To obtain right invariant vector fields, we define for small $\epsilon > 0$, $\gamma_\epsilon(\theta) = \gamma(\theta) + \epsilon u(\gamma(\theta)) = (\exp(\epsilon u) \circ \gamma)(\theta) + o(\epsilon^2)$, then $X_u(\gamma) = \frac{d}{d\epsilon}|_{\epsilon=0}\gamma_\epsilon = u \circ \gamma$ is right invariant since for the right translation $R(\gamma) = \gamma \circ \gamma_1$, we have $dR(\gamma)[X_u(\gamma)] = X_u(\gamma \circ \gamma_1) = X_u(\gamma) \circ \gamma_1$. In the same way, we put $\gamma_\epsilon(\theta) = \gamma(\theta + \epsilon u(\theta)) = (\gamma \circ \exp(\epsilon u))(\theta) + o(\epsilon^2)$, then $Y_u(\gamma) = \epsilon u(\theta)$ where $\gamma_\epsilon'(\theta)$ is the derivative of γ with respect to θ, is left invariant. For a vector field $Z(\gamma)$, the parallel transport to the left is given by $Z(\gamma)(\theta) = \gamma_1(\theta)Z(\gamma)(\theta)$. Let $L_{\gamma}(\gamma_1) = \gamma_1 \circ \gamma$ be the left translation. We define $\text{Ad}(\gamma) : V \to V$ by $\text{Ad}(\gamma)(u)(\theta) = \gamma'(\theta)u(\gamma(\theta))\gamma^{-1}(\theta))$. Then $\text{Ad}(\gamma^{-1})(u)(\theta) = \frac{u(\gamma(\theta))}{\gamma'(\theta)}$. For a rotation of angle ϕ, $\theta + \phi = r_{\phi}(\theta)$. $\text{Ad}(r_{\phi})(u) = u(\theta + \phi)$. Let $u, v \in V$ and consider the vector fields $X_u(\gamma) = u \circ \gamma$ and $X_u(\gamma) = w \circ \gamma$; the bracket is given by $[X_u(\gamma), X_v(\gamma)] = [u, v] \circ \gamma$. For $Y_u(\gamma) = \gamma'(\theta)u(\theta)$, then $[Y_u(\gamma), Y_v(\gamma)] = \gamma'(\theta)[u, v]$.

3. The Hilbert transform

Let $J \cos k \theta = \sin k \theta$ and $J \sin k \theta = -\cos k \theta$, $k \geq 1$. The Hilbert transform J allows to sort out the $\cos k \theta$, $\sin p \theta$, ... according to whether $k > p$ or $k < p$. With (2), we obtain

\[J \cos k \theta, J \cos p \theta \] - $\cos k \theta, \cos p \theta = (p - k)\sin (p + k) \theta,
\]
\[J \sin k \theta, J \cos p \theta \] - $\sin k \theta, \cos p \theta = (k - p)\cos (p + k) \theta
\]
and for $X = \sin k \theta$, or $X = \cos k \theta$ and $Y = \sin p \theta$, or $X = \cos p \theta$, with $p, k \geq 2$,

\[[JX, JY] - [X, Y] = J([X, JY] + [JX, Y]). \tag{7} \]

Since $J^2 = -\text{Id}$, then (7) can be written $[X, JY] + [JX, Y] = J[X, Y] - J[JX, JY]$. Define

\[A(X, Y) = J[X, Y] - [JX, JY] \quad \text{and} \quad B(X, Y) = J[X, Y] - [X, JY], \]

\[\{X, Y\} = \frac{1}{2}([X, JY] + [JX, Y]) = \frac{1}{2}J([X, Y] - [JX, JY]). \tag{8} \]

When $X \neq Y$, we have $B(X, Y) = JB(X, JY)$ as well as $A(X, Y) = JA(X, JY)$ and $A(X, JY) + A(JX, Y) = 0$. Eq. (6) is equivalent to any of the two following $A(JX, JY) = A(X, Y)$ or $B(JX, JY) = B(X, Y)$. For $[,]$, we have the Jacobi identity

\[\{X, [Y, Z]\} + \{Y, [Z, X]\} + \{Z, [X, Y]\} = 0 \tag{9} \]

and $\{JX, JY\} = J\{X, Y\}$. With (7), we deduce

\[J([JX, JY] + [X, Y]) - ([JX, Y] - [X, JY]) = 2A(X, Y), \]
\[J([JX, JY] + [X, Y]) + ([JX, Y] - [X, JY]) = 2B(X, Y). \tag{10} \]

4. The scalar product on $\text{diff}(S^1)/\text{su}(1, 1)$

With the scalar product (1), it was remarked in [3] that $\alpha(k) = \text{constant} \times (k^3 - k)$ when $\text{Ad}(h)$ is a unitary operator for any homographic transformation h. In fact, let $u_{2k}(\theta) = \cos(k \theta)$, $u_{2k+1}(\theta) = \sin(k \theta)$, the condition $\{u_p, u_q\} = 0 \forall p, q \geq 2$ and $u_1 = 1$, $\cos(\theta)$, $\sin(\theta)$ is equivalent to $(1 - k)\alpha(1 + k) + (2 + k)\alpha(k) = 0$ if $k \neq 2$ and $-\alpha(3) + 4\alpha(2) = 0$ which determines completely $\alpha(k) = \text{constant} \times (k^3 - k)$. In that case, for $m, n, p, j \in Z, (m - n)\alpha(p) + (n - p)\alpha(m) + (p - m)\alpha(n) = 0$ if $m + n + p = 0$ and
(j - k)(m + p)α(j + k) - (p - k)(m + j)α(p + k) = (j - p)[(k + j + 2)pα(k + j) + (p - k)α(j + p)] if \(m = k + j + p \).

Lemma 4.1. If \(\alpha(k) = \text{constant} \times (k^3 - k) \), for \(u, v, w \) in \(\text{diff}(S^1) \), we have

\[
\begin{align*}
\{ \sin k\theta & | \{ \cos j\theta, \cos p\theta \} \} + \{ \sin j\theta | \{ \cos p\theta, \cos k\theta \} \} + \{ \sin p\theta | \{ \cos k\theta, \cos j\theta \} \} = 0, \\
\{ \cos k\theta & | \{ \sin j\theta, \cos p\theta \} \} + \{ \cos j\theta | \{ \cos p\theta, \sin k\theta \} \} + \{ \sin p\theta | \{ \sin j\theta, \sin k\theta \} \} = 0.
\end{align*}
\]

We verify (11) as follows. Let \(\delta^p \) be the Kronecker symbol, we add

\[
\begin{align*}
2\{ \sin k\theta & | \{ \cos j\theta, \cos p\theta \} \} = (j + p)\alpha(k)\delta^p_{j+p} + (j - p)\alpha(k)\delta^p_{j-p}, \\
2\{ \sin j\theta & | \{ \cos p\theta, \cos k\theta \} \} = (p - k)\alpha(j)\delta^p_{j+p} - (k + p)\alpha(j)\delta^p_{j-k}, \\
2\{ \sin p\theta & | \{ \cos k\theta, \cos j\theta \} \} = -\{ k + j \alpha(p) \delta^p_{j+p} + (k - j)\alpha(p)\delta^p_{j-k}, \\
2\{ \cos k\theta & | \{ \sin j\theta, \cos p\theta \} \} = (j + p)\alpha(k)\delta^p_{j+p} - (j - p)\alpha(k)\delta^p_{j-p}, \\
2\{ \cos j\theta & | \{ \cos p\theta, \sin k\theta \} \} = (k + j)\alpha(p)\delta^p_{j+p} + (j - k)\alpha(p)\delta^p_{j-k}, \\
2\{ \sin p\theta & | \{ \sin j\theta, \sin k\theta \} \} = (k + j)\alpha(p)\delta^p_{j+p} - (k - j)\alpha(p)\delta^p_{j-k}.
\end{align*}
\]

From (11), we deduce that \(\{ u | \{ \Gamma(v), \Gamma(w) \} \} + \{ v | \{ \Gamma(w), \Gamma(u) \} \} + \{ w | \{ \Gamma(u), \Gamma(v) \} \} = 0 \) or equivalently (3) is true for \(u, v, w \) of the form \(\cos k\theta \) or \(\sin j\theta \). We use the linearity in each variable to prove (3) in its generality.

From (3), we obtain more identities, let \(\{ u | v, u \} = \frac{1}{2}(\{ u | v, u \} + \{ v | w, u \} + \{ w | u, v \} \), then

\[
\begin{align*}
\{ u | v, w \} + \{ v | w, u \} + \{ w | u, v \} &= \frac{1}{2}(\{ u | v, w \} + \{ v | w, u \} + \{ w | u, v \}), \\
\{ u | v, w \} = \frac{1}{2}(\{ u | v, w \} + \{ v | w, u \} + \{ w | u, v \}).
\end{align*}
\]

5. The Levi-Civita’s transfer field and related fields

We follow [12, vol. 1, p. 160 and vol. 2, p. 201], [7] and [2, p. 452]. For \(u, v, w \in \text{diff}(S^1) \), we define \(\Gamma_{\text{LC}}(u, v, w) \) by (4). We denote \(\Gamma_{\text{LC}}(u, v, w) = (\Gamma_{\text{LC}}(u | v, w) = (\Gamma_{\text{LC}}^w_{uv}) \). Since \(\Gamma_{\text{LC}}(u, v, w) \) is antisymmetric in \(u, v, w \), the adjoint \(\Gamma_{\text{LC}}^* \) satisfies \(\Gamma_{\text{LC}}^* = -\Gamma_{\text{LC}}^* \). With (3), we deduce that the connection \(\Gamma_{\text{LC}} \) preserves the complex structure, \(\Gamma_{\text{LC}}(u, v, w) = \Gamma_{\text{LC}}(Ju, Jv, Jw) \). The transfer field \(\Gamma_{\text{LC}} \) is the half sum of two antisymmetric transfer fields

\[
\Gamma_{\text{LC}} = \frac{1}{2}(\Gamma_3 + \Gamma_3), \quad \text{with } \Gamma_3(u, v, w) = \{ [u, w] | \pi v \}, \quad \Gamma_3(u, v, w) = \{ [w, v] | \pi u \} - \{ [u, v] | \pi w \}.
\]

For \(\Gamma = \Gamma_3, \Gamma_3, \Gamma_3(v)J \neq J\Gamma(v) \), we obtain \(\Gamma_{\text{LC}}^w = \Gamma(u, v, w) \) and define

\[
\begin{align*}
\Gamma_1(u, v, w) &= \{ [u, v] | \pi w \} = (\Gamma_1^w)_{uv}, \\
\Gamma_2(u, v, w) &= \{ [v, w] | \pi u \} = (\Gamma_2^w)_{uv}, \\
\Gamma_4(u, v, w) &= \{ [w, u] | \pi v \} + \{ [w, v] | \pi u \} = (\Gamma_4^w)_{uv}.
\end{align*}
\]

Then \(\Gamma_{\text{LC}} = \frac{1}{2}(\Gamma_4 - \Gamma_1) \) and \(\Gamma_3 = -(\Gamma_1 + \Gamma_3) \). Another connection also preserves the complex structure, see [6],

\[
\Gamma_{\text{LC}}(u, v, w) = \Gamma_{\text{LC}}(Ju, Jv, Jw) = (\Gamma_{\text{LC}}(u | v, w) = (\Gamma_{\text{LC}}^w)_{uv}.
\]

\[
\Gamma_{\text{LC}}(u, v, w) = \Gamma_{\text{LC}}(Ju, Jv, Jw) = (\Gamma_{\text{LC}}(u | v, w) = (\Gamma_{\text{LC}}^w)_{uv}.
\]
Let \(A(v, w) \) and \(B(v, w) \) as in (8). Then
\[
(B(v, w) | u) - (B(v, u) | w) = (J v | [w, u]) + ([J w, v] | u) - ([J u, v] | w).
\]
\[
(A(v, w) | u) - (A(v, u) | w) = (\Gamma_A(J v) u | w),
\]
\[
J \Gamma_A(J v) u + \Gamma_A(v) u = 2 B(u, v).
\]

To prove the last identity, we remark with (3) that
\[
(J \Gamma_A(J v) u | w) - (J \Gamma_A(v) u | w) = 2 B(u, v) | w).
\]
With (3), we obtain that
\[
(\Gamma_A(J v) u | w) - (\Gamma_A(v) u | w) = 2 (J B(u, v) | w).
\]

6. Composition of transfer fields: expression with symbols

The following operators \(\Gamma_{e_j} \) are diagonal in the basis \(|c_m, s_n\rangle \) and the series \(\sum_{j \geq 2} E_j \) converge,
\[
(\Gamma^2_{e_j} + \Gamma_{e_j}) c_m = -\frac{1}{2} A_{mj}^2 + A^2_{j m} c_m,
\]
\[
(\Gamma^2_{e_j} + \Gamma_{e_j}) c_m = -\frac{1}{2} A_{mj}^2 + A^2_{j m} c_m,
\]

For \(j \geq 2 \), let \(\epsilon_j = c_j(\theta) = \frac{\cos j \theta}{\sqrt{2}} \) and \(\epsilon_{j+1} = s_j(\theta) = \frac{\sin j \theta}{\sqrt{2}} \). If \(\Gamma = \Gamma_{e_j} \), \(\Gamma_{e_k} \) or any \(\Gamma \) as above, we denote \(I_{e_j e_k} = (\Gamma_{e_j}, e_k, e_j) = (\Gamma_{e_j})_{e_k} e_j \). Let \(\delta^k_\ell \) be the Kronecker symbol. The symbol
\[
A_{j k p} = \delta^{k+j} p (j + k) \sqrt{\frac{\alpha(p)}{\alpha(k)}} \quad \text{for} \quad j, k, p \geq 2,
\]
is convenient to calculate in a systematic way the composition of \(\Gamma \)’s,
\[
\frac{1}{2} [A_{j k p} + A_{p k j}] = \frac{1}{2} \left([c_p, s_j] c_k \right) + \left([c_p, s_k] s_j \right) - \left([s_j, c_k] c_p \right) = (\Gamma_{e_j}^p c_k)_{e_k} = -(\Gamma_{e_k}^p c_j)_{e_j},
\]
\[
\frac{1}{2} [A_{j k p} - A_{p k j}] = \frac{1}{2} \left([c_p, s_j] s_k \right) - \left([c_p, s_k] c_j \right) + \left([s_j, c_k] c_p \right) = -(\Gamma_{e_j}^p s_k)_{e_k},
\]

The following operators \(E_j \) are diagonal in the basis \(|c_m, s_n\rangle \) and the series \(\sum_{j \geq 2} E_j \) converge,
\[
\begin{align*}
\Gamma_{4}(c_j)\Gamma_{1}(c_j) + \Gamma_{3}(s_j)\Gamma_{1}(s_j) = & \left[\frac{1}{2}(A_{jm}A_{jr} - A_{jm}A_{jr}) + \frac{1}{2}(A_{mjr} + A_{mrj})\right]c_m, \\
\Gamma_{4}(c_j)\Gamma_{2}(c_j) + \Gamma_{3}(s_j)\Gamma_{2}(s_j) = & \left[\frac{1}{2}(A_{jr}A_{jm} - A_{jr}A_{jm}) + \frac{1}{2}(A_{mjr} - A_{mrj})\right]c_m, \\
\Gamma_{1}(c_j)\Gamma_{2}(c_j) + \Gamma_{1}(s_j)\Gamma_{2}(s_j) = & \left[-\frac{1}{2}(A_{jr}A_{jm} + A_{jm}A_{jr}) + \frac{1}{2}(A_{mrj} - A_{mjr})\right]c_m, \\
\Gamma_{LC}(c_j)\Gamma_{2}(c_j) + \Gamma_{LC}(s_j)\Gamma_{2}(s_j) = & \left[\frac{1}{2}A_{jr}A_{jm} - A_{rjm}^2\right]c_m.
\end{align*}
\]

The operator \(\Lambda \) defined by (5) is a bounded operator with the metric \(\alpha(k) = k^3 - k \),

\[
2\Lambda c_m = -\sum_{j \geq 2} A_{mjr}A_{mrj}c_m = -\sum_{j \geq 2} \frac{(2m - j)(m + j)}{\alpha(m)}1_{m \geq j + 2}c_m = - \frac{13}{6} + \text{a finite number of terms in } \frac{1}{m}, \tag{21}
\]

\(\Lambda \) is related to the tangent processes introduced in the works \([7,9]\). Among all the Driver’s connections, see \([8]\), \(\Gamma_{LC} \) and \(\Gamma_{A} \) are the only ones for which \(\sum_{j \geq 2} \Gamma^2(c_j) + \Gamma^2(s_j) \) converge. The series \(\sum_{j \geq 2} \Gamma^2(c_j) + \Gamma^2(s_j) \) converge for \(\Gamma_{LC} \) and \(\Gamma_{A} \), it diverge for \(\Gamma = \Gamma_{3}, \Gamma_{5} \) and \(\Gamma_{1}, \Gamma_{2} \).

References