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Abstract

We give explicit formulas for the coproduct and the antipode in the Connes–Moscovici Hopf algebraHCM. To do so, we
first restrict ourselves to a sub-Hopf algebraH1 containing the nontrivial elements, namely those for which the coproduc
the antipode are nontrivial. This algebraH1 is isomorphic to a sub-Hopf algebra of the classical shuffle Hopf algebra w
appears naturally in resummation theory, in the framework of formal and analytic conjugacy of vector fields. Using t
simple structure of the shuffle Hopf algebra, we derive explicit formulas for the coproduct and the antipode inHCM. To cite
this article: F. Menous, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Formules pour l’algèbre de Hopf de Connes–Moscovici.Nous donnons des formules explicites pour le coproduit et l
tipode dans l’algèbre de Hopf de Connes–MoscoviciHCM. Pour ce faire, on se restreint d’abord à la sous-algèbre de
H1 contenant les éléments non triviaux, i.e. ceux pour lesquels le coproduit et l’antipode sont non triviaux. Cette alg
isomorphe à une sous-algèbre de l’algèbre de Hopf des battages qui apparaît naturellement en théorie de la resomm
l’étude de la conjugaison formelle et analytique des champs de vecteurs. En utilisant la structure très simple de l’algèbr
des battages, on déduit des formules explicites pour le coproduit et l’antipode dansHCM. Pour citer cet article : F. Menous,
C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The Connes–Moscovici Hopf algebraHCM defined in [5] is the enveloping algebra of the Lie algebra whic
the linear span ofY , X, δn, n � 1 with the relations,

[X,Y ] = X, [Y, δn] = nδn, [δn, δm] = 0, [X,δn] = δn+1 (1)
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for all m,n � 1. The coproduct cop inHCM is defined by

cop(Y ) = Y ⊗ 1+ 1⊗ Y, cop(X) = X ⊗ 1+ 1⊗ X + δ1 ⊗ Y, cop(δ1) = δ1 ⊗ 1+ 1⊗ δ1 (2)

with cop(δn) defined by induction using (1). The coproduct ofX andY is given, whereas the coproduct ofδn is
nontrivial. Nonetheless, the algebra generated by{δn, n � 1} is a graded sub-Hopf algebraH1 ⊂ HCM, called the
Faà di Bruno algebra, whose graduation is defined by gr(δn1 · · · δns ) = n1 + · · · + ns .

The Hopf algebraH1 is strongly linked to the Lie algebra of formal vector fields on the line: letA1 the Lie
algebra of formal vector fields generated by the derivationsBn = xn+1∂x (n � 1). Its enveloping algebraU(A1) is
a graded Hopf algebra and, see [5], the Hopf algebraH1 is the dual ofU(A1). Note that this dual is well-defined
since the graded components ofU(A1) are finite dimensional vector spaces. IfG(A1) ⊂ U(A1) is the group of the
group-like elements ofU(A1), it can be identified to the groupG2 of formal diffeomorphisms ofR, of the form
ψ(x) = x + o(x) by the equality

∀F ∈ G(A1), F · f = f ◦ ψ−1, f function onR (3)

and, see [5], if, forn � 1, the functionalγn onG2 is defined by

γn(ψ
−1) = (

∂n
x logψ ′(x)

)
x=0 (4)

then the equalityΘ(δn) = γn determines a canonical isomorphismΘ of H1 with the Hopf algebra of coordinate
on the groupG2. This does not help much in finding explicit formulas forH1 but this definitely suggests a lin
betweenH1 and the shuffle Hopf algebra.

2. The shuffle Hopf algebra

The origin of the present work is based on the following remark: the Lie algebraA1 and the groupG(A1) = G2
appear naturally in the framework of formal and analytic conjugacy of local analytic vector fields. The
been an extensive work on this problem (see, for example, [1–3]) and, roughly speaking, the formal con
diffeomorphism, if it exists, is generally defined with the help of the elementsBn of A1, where, in the computations
one can consider that the elementsBn freely generate a free Lie algebra.

These remarks suggest the introduction of, by analogy withA1, the graded free Lie algebraA1, generated by a
set of primitive elements∆n, n � 1,

cop(∆n) = ∆n ⊗ 1+ 1⊗ ∆n. (5)

The enveloping algebraU(A1) is a Hopf algebra which is also called the concatenation Hopf algebra in com
torics (see [4]). If the unity is∆∅ = 1, then a basis of the vector spaceU(A1) is given by the elements

∆n1 · · ·∆ns = ∆n1,...,ns (6)

where(n1, . . . , ns) is in

N = {
n = (n1, . . . , ns) ∈ (N∗)s, s � 0

}
(7)

with (n1, . . . , ns) = ∅ if s = 0.
The structure of the enveloping algebraU(A1) can be described as follows: the product is given by

∀m,n ∈ N , ∆m∆n = ∆mn (concatenation), (8)

the coproduct is

cop(∆n) =
∑

shn1,n2

n ∆n1 ⊗ ∆n2 (9)

n1,n2
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n is the number of shuffling of the sequencesn1,n2 that givesn. Finally, the antipodeS is defined by

S(∆n1,...,ns ) = (−1)s∆ns,...,n1. (10)

Once again one can define the groupG(A1). Thanks to the graduation onU(A1), its dualH 1 is a Hopf algebra
the Hopf algebra of coordinates onG(A1) and, if the dual basis of{∆n,n ∈N } is {Zn,n ∈N } then the product in
H 1 is defined by:

∀n1,n2, Zn1
Zn2 =

∑

n

shn1,n2

n Zn. (11)

The coproduct is:

cop(Zn) =
∑

n1n2=n

Zn1 ⊗ Zn2
, (12)

wheren1n2 is the concatenation of the two sequences. Finally, the antipode is given by

S(Zn1,...,ns ) = (−1)sZns,...,n1. (13)

The structure ofH 1 (coproduct, antipode,. . . ) is fully explicit. This will be of great use since one candefine
a surjective morphism fromA1 ontoA1 that induces an injective morphism fromH1 into H 1. In other words,
H1 can be identified with a sub-Hopf algebra ofH 1 and, as everything is explicit inH 1, one can derive formula
for the coproduct and the antipode inH1.

3. Morphisms

The map defined byρ(∆n) = Bn = xn+1∂x obviously determines a surjective morphism fromA1 (resp.U(A1),
resp.G(A1)) ontoA1 (resp.U(A1), resp.G(A1) = G2) since{∆n}n�1 (resp.{Bn}n�1) is a generating family o
primitive elements ofU(A1) (resp.U(A1)). By duality, it induces a morphismρ∗ from H1 to H 1 by

∀δ ∈H1, ρ∗(δ) = δ ◦ ρ (14)

and, sinceρ is surjective,ρ∗ is injective:H1 is isomorphic to the sub-Hopf algebraρ∗(H1) ⊂ H 1. Using this
injective morphism, we define

∀n � 1, Γn = ρ∗(δn) (15)

andρ∗(H1) is then the Hopf algebra generated by theΓns. In order to get formulas inH1, we will use the algebra
ρ∗(H1) and express theΓns in terms of theZns:

Theorem 3.1.For n � 1,

Γn = n!
∑

n=(n1,...,ns )∈Nn

QnZn (16)

where n ∈Nn if n1 + · · · + ns = n and Qn1,...,ns = (ns + 1)
∏s

i=2 n̂i with Qn1 = (n1 + 1) and n̂i = ni + · · · + ns .

The proof is based on the definition ofρ∗ and on the formula for the product inH 1. For example, letF =∑
n∈N Mn∆n ∈ G(A1) whereM∅ = 1 andMn = Zn(F ) ∈ R satisfy formula (11). Ifρ(F ) is identified to the

elementψ of G2 by Eq. (3) then

ψ−1(x) = ρ(F ) · x = x + M1x2 + (2M1,1 + M2)x3 + · · · . (17)

From this, one can deduce thatΓ2(F ) = γ2(ψ) = 2!(6M1,1 + 3M2 − 2M1M1) but, sinceM1M1 = 2M1,1

Γ2(F ) = γ2(ψ) = 2!(2M1,1 + 3M2) = 2!(2Z1,1 + 3Z2)(F ). (18)
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4. Formulas

As ρ∗(δn) = Γn ∈ H 1, and, since the coproduct and the antipode are explicit inH 1, we get, after some heav
recursive computations, the following formulas:

Theorem 4.1.For n � 1,

cop(δn) = δn ⊗ 1+ 1⊗ δn +
∑

(n1,...,ns+1)∈Nn,s�1

n!
n1! · · ·ns !ns+1!α

n1,...,ns
ns+1

(δn1 · · · δns ) ⊗ δns+1 (19)

and, for n = (n1, . . . , ns) ∈N /{∅} (l(n) = s) and m � 1,

αn
m =

l(n)∑

t=1

Ct
m

∑

n1···nt=n,ni 	=∅

1

l(n1)! · · · l(nt )!
t∏

i=1

1

‖ni‖ + 1
(20)

where, for n = (n1, . . . , ns) ∈ N , l(n) = s, ‖n‖ = n1+· · ·+ns and with the convention Ct
m = m!

t !(m−t)! = 0 if t > m.

For the antipodeS:

Theorem 4.2.For n � 1,

S(δn) =
∑

n=(n1,...,ns )∈Nn

n!
n1! · · ·ns !β

n1,...,ns δn1 · · · δns (21)

with βn1 = −1 and, if (n1, . . . , ns+1) ∈ N (s � 1) and n = (n1, . . . , ns),

βn1,...,ns ,ns+1 =
s∑

t=1

∑

n1···nt=n,ni 	=∅
B‖n1‖,...,‖nt‖

ns+1

1

l(n1)! · · · l(nt )!
t∏

i=1

1

‖ni‖ + 1
(22)

where, if m = (m1, . . . ,mt ) ∈N /{∅} and k � 1,

Bm
k =

l(m)∑

i=1

(−1)i−1
∑

m1···mi=m, mj 	=∅

i∏

j=1

C
l(mj )

k+‖mj+1‖+‖mj+2‖+···+‖mi‖ (23)

with ‖mj+1‖ + ‖mj+2‖ + · · · + ‖mi‖ = 0 if j = i.

These computations are nontrivial but, at least, we have formulas for the coproduct and the antipod
Connes–Moscovici Hopf algebra. Note that these formulas are not unique, becauseH1 is commutative but, in the
computations, it is much more ‘simple’ to consider that the algebra generated by theδn is noncommutative.
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