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Abstract

A graphG is said to be a functional graph if there exist two mappingsf andg from V (G) into a setF such thatxy is
an edge inG wheneverf (x) = g(y) or g(x) = f (y). Chvátal and Ebenegger proved that recognizing functional graphs
NP-complete problem. Using the compactness theorem, we prove that ifG is an infinite graph such that any finite subgraph
G is a functional graph, thenG is a functional graph. We give an elementary proof of this fact in the infinite countable ca
the finite case, we prove that forn large enough, any graph of girthn containing at most 3n − 7 vertices is a functional graph.
will be shown by an example that this bound is the best possible.To cite this article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. I
341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Graphes fonctionnels.Un grapheG est dit graphe fonctionnel s’il existe deux applicationsf etg deV (G) dans un ensembl
F telles quexy est une arête deG si et seulement sif (x) = g(y) ou g(x) = f (y). Chvátal et Ebenegger ont prouvé que
problème de reconnaissance des graphes fonctionnels est NP-complet. En utilisant le théorème de compacité, nou
que siG est un graphe infini tel que tout sous-graphe fini deG est fonctionnel, alorsG est fonctionnel. Nous donnons un
preuve élémentaire de ce fait dans le cas dénombrable. Dans le cas fini, nous prouvons que pourn suffisamment grand, tou
graphe sans cycle d’ordre plus petit quen et contenant au plus 3n−7 sommets est un graphe fonctionnel. Il sera montré à l’
d’un exemple que 3n − 7 est la meilleure borne possible.Pour citer cet article : A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 341
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The graphs and digraphs considered here may be infinite. They have no loops or multiple edges. A digr
have directed cycles of length two. Whena = (x, y) is an edge ofD thenx is said to be the tail ofa, andy is
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.05.021
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the head ofa. We writet (a) = x andh(a) = y. Multigraphs and multidigraphs are obtained when multiple ed
are allowed. We refer to [5] and [6] for a good knowledge of compactness theorem and basic definitions in
Theory. IfH is a subgraph of connected graphG, G − H denotes the graph obtained fromG by deleting first the
edges ofH and then the isolated vertices. ByG(D) we denote the underlying graph of a digraphD that is the
graph obtained by ignoring the orientation of the edges inD. (A cycle of length two corresponds to a unique edg

Let D be a multidigraph.The line digraphL(D) of D is the digraph whose vertex set is the edge set ofD, where
(e, f ) is an edge inL(D) if h(e) = t (f ). Based on [3] we may easily remark that functional graphs are exactl
underlying graphs of line digraphs defined simply in terms of functions. In fact, letf andg be two mappings from
V (G) into a setF which satisfy:xy ∈ E(G) ⇔ f (x) = g(y) or g(x) = f (y) for everyx andy in V (G).

On V (G) we define a multidigraphD by puttingα edges froma to b whereα = |g−1(a) ∩ f −1(b)| for all
a, b ∈ V (G), and a digraphH such that(x, y) ∈ E(H) if f (x) = g(y).

We associate to each edge(a, b) in D a unique vertexx in V (H) such thatg(x) = a andf (x) = b. Then(x, y)

is an edge inH if h(x) = t (y) (as edges inD). ThusH = L(D). It may be easily remarked thatG = G(H).
Beineke in [1] characterizes line digraphs as follows:

Theorem 1.1.A digraphH is a line digraph if and only if whenevera, b andc are any three edges inH such that
h(a) = h(b) and t (b) = t (c), there exists an edged in H such thatt (d) = t (a) andh(d) = h(c).

Chvátal and Ebenegger [2] prove that recognizing underlying graphs of line digraphs is an NP-comple
lem.

By simply remarking that the construction of Chvátal and Ebenegger leads to a square free graph, we
[4] that Chvátal and Ebenegger’s proof implies even more, namely that recognizing underlying graphs o
digraphs of digraph in which each vertex has in-degree or out-degree at most one is an NP-complete prob

Let G be an infinite graph such that any finite subgraph ofG is a functional graph. It is normal to ask wheth
G is a functional graph or not. We treat this problem in the next section.

2. Infinite functional graphs

A direct application of the compactness theorem of model theory yields the following theorem:

Theorem 2.1.Let G be an infinite graph such that any finite subgraph ofG is a functional graph. ThenG is a
functional graph.

This theorem can also be established using ultrafilter’s axiom, but without using the axiom of choice requ
the compactness theorem. In the infinite countable case, we may establish an elementary proof based on
This proof gives a little bit more. In fact the theorem may be improved by replacing subgraphs by only in
subgraphs. It may be shown by examples that a subgraph of a functional graph may be a non function
while the induced subgraph of a functional graph is always a functional graph.

3. Finite functional graphs

As a consequence of Beineke theorem, a functional graph cannot contain the complete graphK4 as subgraph
HenceK4 is a simple example of finite non functional graph such that any proper subgraph (distinct from the
itself) is functional. Other examples without complete subgraph can be constructed. More precisely, we d
all n � 5 a non functional graphG of girth n such that any proper subgraph is a functional graph. We start b
following trivial fact.
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Proposition 3.1.A graphG containing at most one cycle is a functional graph.

Definition 3.2. A graphG with �(G) � 3 is called small if it is defined by three paths having the same ends
no other intersection, some vertices of the paths are joined to vertices of degree 1 in such a way that two
on the same path having degree two are adjacent.

If G is a graph, we denote byG2 the subgraph ofG induced by the vertices of degree two and byG3 the
subgraph induced by those of degree at least three. A 2-vertexof G is a vertex whose neighbors are all of degre
most two. IfA ⊆ V (G), we denote byV2(A) the set of the vertices having distance at most 2 from some ver
in A. The following lemma is a simple remark on line digraphs:

Lemma 3.3.Let G be a functional graph of girth at least5, and letL be a line digraph such thatG = G(L).
If S is a connected component ofG3 containing exactly one cycle thend−

L (v) = d−
S (v) = 1 for all v ∈ S or

d+
L (v) = d+

S (v) = 1 for all v ∈ S.

Proposition 3.4.Let G be a small graph of girth at least5 and having exactly two vertices of degree two. If th
vertices belong to the same path, thenG is not a functional graph andG − v is functional for all vertexv in G.

Corollary 3.5. LetG be a graph obtained from a small graphGs by adding to it a set of vertices( possibly empty)
of degree exactly one joined to vertices of odd degree inGs . If Gs contains at least 3 vertices of degree two, th
G is a functional graph. We call it agood small graph.

Inspired by the above proposition, we asked about a lower bound of the orders of non functional gr
girth n. We are led to prove the following result:

Theorem 3.6.If n � 30, then any graphG of girth n such thatv(G) � 3n − 7 is a functional graph. This bound i
the best possible.

Definition 3.7. A chord of a cycleC is a path intersectingC only at its ends. Anl-chord ofC is a chord of length
at mostl. s chords of a cycle are said to be free if they may only intersect at their ends. Two free chords are
be parallel whenC may be the outer face of the planar graph formed byC together with these two chords.

To prove Theorem 3.6, we need some lemmas:

Lemma 3.8.Let G be a bipartite planar graph with no cut-vertex. Suppose thatV = X ∪ Y whereX andY are
two stables such thatV (G3) ⊆ X. Then|Y | − |X| = f − 2, wheref is the number of faces ofG.

Corollary 3.9. LetG be a planar graph withf faces and no cut-vertex. LetM be a multigraph obtained by addin
to G a stable setS of s new vertices such that each vertex ofS is joined to exactly one vertex ofG by a double edge
If V (M) = X ∪ Y whereX andY are two stables such thatV (M3) ⊆ X, then|Y | − |X| = f (M) − 2. (f (M) is
the number of faces ofM .)

Lemma 3.10.LetG be a planar graph of girthn. Thenv(G) � nf
2 − f + 2, wheref is the number of faces ofG.

Lemma 3.11.Let G be a graph of girthn � 30 such thatv(G) � 3n − 7 and suppose thatG has no cycles
with 4-chord. If Gp is a planar subgraph ofG with 4 faces and no cut-vertex, the induced subgraphs ofG by
V (G3) ∩ V (Gp) andV (G2) ∩ V (Gp) are denoted byT andT ′ respectively. Then eitherT ′ contains a connecte
component with at least three vertices orT contains a connected componentC such that|V2(C) − V (Gp)| � 2
andC contains no vertexv such thatd (v) � 3.
Gp
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Remark 1. Using the same arguments, we may get the same sequences even ifGp has less than 4 faces but at le
2n − 5 vertices.

Lemma 3.12.Let G be a graph of girthn � 30 such thatv(G) � 3n − 7 and suppose thatG has no cycles with
4-chord. Then one of the following statements holds:

1. G has at most one cycle.
2. G is a good small graph.
3. G contains a2-vertex.
4. There is a subtreeT of G containing a single pair of non adjacent vertices ofG2 which are joined to vertice

in G − T .

Now we study the graphG when 4-chords exist. We first remark the following:

Lemma 3.13.Let G be a graph of girthn such thatv(G) � 3n − 7. ThenG has neither cycle with2 parallel
2-chord nor a cycle containing a3-chord with a vertex joined to a vertex of the cycle distinct from the ends o
chord.

Corollary 3.14. LetG be a graph of girthn such thatv(G) � 3n − 7. ThenG has no cycles with4 free2-chords.

Lemma 3.15.Let G be a graph of girthn � 30 such thatv(G) � 3n − 7. If G contains a cycleC with at least
3n − 24 vertices, thenG contains a2-vertex.

Lemma 3.16.LetG be a graph of girthn � 30such thatv(G) � 3n−7. Then one of the statements of Lemma3.12
holds.

Proof of Theorem 3.6. It is sufficient to show thatG may have an orientation satisfying Beineke theorem.
obvious if G contains exactly one cycle or ifG is a good small graph. IfG contains a 2-vertexv, we argue by
induction by remarking that any orientation ofG − v respecting Beineke theorem can be extended toG. By the
above lemma we have only to study the case whereG contains a treeT with exactly two verticesx andy joined
to two verticesx′ andy′ in G − T respectively, such thatx andy are non adjacent and belong toG2. Let P

be the path inT of endsx andy. Sincex andy are non adjacent, thenP contains a vertexw distinct fromx

andy. By inductionG − T may have an orientationL respecting Beineke theorem. If the edgesxx′ andyy′ are
oriented in different ways with respect toP , suppose that(x′, x) ∈ E(L) and(y, y′) ∈ E(L), then we complete by
orienting directlyP from x to y. The remaining edges are oriented away from it. In the other case, suppos
(x′, x) ∈ E(L) and (y′, y) ∈ E(L), we orient directly the pathsxw andyw from x to w and fromy to w. The
other remaining edges ofT are oriented towardsP . The digraph obtained in both cases is a line digraph, soG is
functional graph.

To show that the established bound is the best possible, consider the small graph of Proposition 3.4. U
calculation of Lemma 3.10, we may easily verify thatv(G) � 3n − 6. The equality is established if the lengths
the three paths are equal ton

2 for n even. This achieves the proof of Theorem 3.6.�
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