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Abstract

This Note presents a randomized method to approximate any weétom some sef” c R". The data one is given is the

setT, andk scalar productg(X;, v))f.‘zl, Where(X,»)f.‘=1 are i.i.d. isotropic subgaussian random vector®&t andk « n.

We show that with high probability any € T for which ((X;, y))f.‘:l is close to the data vectotX;, v))i.‘:l will be a good
approximation ofv, and that the degree of approximation is determined by a natural geometric parameter associated with the
setT. This extends and improves recent results by Candes anddaie this article: S. Mendelson et al., C. R. Acad. Sci.

Paris, Ser. | 340 (2005).
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Résumé

Reconstruction et processus sous-gaussiel3ans cette Note, on présente une méthode stochastique pour approcher un
vecteurv d’une partiel’ C R”. Les données sont d’une pdrtet d’autre park produits scalaire§(X;, v))f.‘zl, ou (X,-){.‘:l sont
des vecteurs aléatoires &¥, indépendants de type sous-gaussienk<gtn. On montre qu’'avec une grande probabilité, tout
y € T pour lequel({(X;, y))f‘:l est proche d¢(X;, v))le est une bonne approximation devec un degré d’erreur déterminé
par un parametre de la géométrieTeCette approche permet de généraliser et d'améliorer des résultats d’'un récent travail de
Candes et TadRour citer cet article: S. Mendelson et al., C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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E-mail addressesshahar.mendelson@anu.edu.au (S. Mendelson), alain.pajor@univ-mlv.fr (A. Pajor), nicole@ellpspace.math.ualberta.ca
(N. Tomczak-Jaegermann).
1 Partially supported by an Australian Research Council grant.
2 This author holds the Canada Research Chair in Geometric Analysis.

1631-073X/$ — see front mattdrl 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.04.032



886 S. Mendelson et al. / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 885-888

The goal of this Note is to investigate the possibility of randomly reconstructing a signal or veltortaken
from a setT, using random projections. To be precise, suppose that one can select a probability measure
R" and letX1, ..., X} be independent random vectors distributed according fBhe reconstruction problem we
consider is as follows: the data we are given are the values of the projections of the unknown weciyr— that
is, the set of values of scalar produ¢t, v), and we study how to use this information (and the fact thaf") to
find somey e R” for which the Euclidean distandy — v|| < e(k), where this reconstruction error must hold with
high probability. For more information on reconstructions and related coding and decoding we refer to [4].

Questions of a similar flavor have been thoroughly studied in nonparametric statistics and statistical learning
theory (see, for example, [3,8] and references therein). Here, we use randomized methods developed in asymptotic
geometric analysis to prove a bounda(#) in terms of the geometric structure of the Fet

The article [4] focuses on specific sdts- the(] unit ball and the unit ball in weak), space for O< p < 1. Here
we show that the reconstruction process holds faarditrary setT c R” (of course, the degree of approximation
depends on the geometry &), and using a large class of measuresi®¥nthat contains the Gaussian measure
and the uniform measure gr-1, 1}". In particular, for these measures we obtain the optimal estimates for the sets
considered above. The probability we get is exponentially rather than polynomially small. Let us mention that for
these sets and for the Gaussian measure exponentially small probability was obtained in [13] (using Candes and
Tao’s general approach). In fact the case follows from [5]. We also demonstrate that the same optimal estimates
hold for a much wider family of measures.

Moreover we show that the reconstruction is robust to ‘noise’, in the sense that if, then to ensure that
lly — v|l is ‘'small’ it suffices to verify that the vectar X;, y)){.‘:1 is close, but not necessarily identical, to the data
vector ((X;, v)*_,.

It turns out that the reason why such results hold is that under mild assumptions on the probability measure
u and the sef", the randonk-dimensional projection operatdr = Zf-‘zl(x,-, -Ye; satisfies that kef N T has a
‘small’ diameter. Indeed, suppose for simplicity tifais symmetric and convex and that for an unknowa T
we find y € T which satisfies thatX;, y) = (X;, v) for 1 <i < k. Thenv andy are in an affine section df with
Euclidean diameter less that the onefof) kerI". In other words, the fact that a kernel of random projection
generated by is a section of small diameter @f suffices for the reconstruction process, and any poiffitirhich
is in the same translate of kErasv would be a good approximation. This argument was introduced in [9] for
approximating smooth functions.

To formulate the first technical tool, we require the following standard definition.

Definition 1. Let T c R" and letgs, ..., g, be independent, standard Gaussian random variables. Denote by
0.(T)=Esuper | > i_q gitil, wherer = (1))!_; e R".

We use the following formulation of the main result from [11] (see also [12]). Recalliti@aiR” is star-shaped
if teTand 0O< A < limpliesar e T.

Theorem 2.There are absolute constantand C for which the following holds. Let < k < n, let X1, ..., X; be
independen (0, Ir») Gaussian random vectors R* and letl” = Zf‘:l(X,-, -Ye;. Then, for every star-shaped set

T c R", with probability larger thanl — exp(—ck) we havediamkerI"'NT) <inf{p > 0; £.(T NpB3) < Cok}.

Remark 1. Although the above statement did not explicitly appear in [11], it follows immediately from the proof
there. The parameter igf > O; £.(T N pBy) < Cp~/k} was introduced in [12].

A result similar to Theorem 2 (with the same probabilistic estimate) holds true for ragdoxrectors — this
follows from the result in [1], as observed in [10].

We extend Theorem 2 by showing that the diameter of a ‘typikaibdimensional section of is small,
even for other measures. Recall that the norm of a random variablgl is defined as|X||y, = inf{c > 0:
Eexp(|X|?/cP) < 2.
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Definition 3. A probability measure. on R” is called isotropic if for every € R”, E|(X, y)|2 = || y||%, where
X is distributed according te.. A measureu satisfies ay» condition with a constank if for every y € R”,

X, Y ly, < e@llyll-

Perhaps the most important example of an isotragigrobability measure ofR” with a bounded constant
other than the Gaussian measure is the uniform measufe-byil}”. Naturally, if X is distributed according
to a general isotropigy/o measure then the coordinates Xfneed no longer be independent. For example, the
normalized Lebesgue measure on an appropriate multiple of the unit glifor 2 < p < oo is an isotropicyr,
measure with a constant independent:adnd p. For more details on such measures see [10]. Our extension of
Theorem 2 for isotropi@r, probability measures is based on an approach from [7]. For its formulation we require
the notion of they, functional [14].

Definition 4. For a metric spaceT’, d) let y2(T,d) :=infsupcr > oo 2/24(t, Ty), where the infimum is taken
with respect to all sequences of subskts 7" with cardinality|7;| < 22 and|Tp| = 1.

The y» functional plays a central role in the theory of Gaussian processes. By the majorizing measure theorem
(see [14] for the most recent survey on the topic) there are absolute congtamsc, such that if{X,: ¢ € T}
is a Gaussian process, anlfl(s, 1) =E|X, — X,|? is its covariance structure, thefy>(T, d) < Esuper X: <
c2v2(T, d2).

The key lemma we require is the following estimate on the empidgatiiameter of a random coordinate
projection of a set of functions. The proof is based on an argument from [7].

Lemma 5. There existi, ¢ > 0 for which the following holds. Let > 1 and letF be a class of functions on a prob-
ability space($2, ) such that for everyf, g € F, || flly,qo < all fllLog, @ndllf — gllyo <allf — gllzaw)- Let
k> 1landletXy,..., X; be independent, distributed accordingitoThen, with probability at least — exp(—ak),
we havesupy e (3 Y1y f2(Xi)Y? < ca(supyep B 22 + yo(F. | o) /VE).

The proof of they, analog of Theorem 2 goes along the same lines as in [11], when Lemma 5 and Bernstein’s
inequality replace the probabilistic estimates required in the argument.

Theorem 6.For everya > 1 there exist(«), C(«) > 0for which the following holds. Let c R" be a star-shaped
set. Leta > 1, let u be an isotropicy2 probability measure with constant Letl < k < n, and letXq, ..., X be
independent, distributed accordingto LetI" = Zle(Xi, -Ye;. Then, with probability at least — exp(—c(a)k),
diamkerI" NT) <rf, wherer) =r(T) :=inf{p > 0: £,(T N oS 1 < Cla)pvk).

Applying Theorem 6 one can reconstruct ang 7 using the datg X;, v) for a generalsetT. Indeed, let
T={rr—v): teT, 0<A<1}). Then, ifr € T satisfies/X;, v) = (X;,t) thent — v e kerI’ N T, and, with high
probability, || — v|| < r,j(f). Of course, ifT happens to be convex and symmetric tlier v C 2T which is star-
shaped and thug — v|| </ (2T). In a more general case, whénis symmetric and quasi-convex with constant
c>1,i.e.,T+T C2T,thenitis star-shaped amd- v e kerI" N 2cT. Thus, ||t — v| < r}(2cT). This is the case
of the unit ball7,, in weak¢, (0 < p < 1) for whichc = 21/7~1, (Recall thatT), is the set of allv = (x;) € R”
such that the cardinalityfi: |x;| > s}| < s~? for all s > 0.) Thus, the ability to approximate any pointihusing
this kind of random sampling depends on the expectation of the supremum of a Gaussian process indexed by the
intersection ofl" and a sphere of a certain radius.

Let us now formulate an ‘almost isometric’ version of the reconstruction theorem. By almost isometric we
mean that in order to obtain a good reconstruction, it suffices that the \(em;ory))f.‘:l is close to the data vector
(X, v))f.‘:l. The benefit is that the reconstruction algorithm is more robust. The price paid for this added flexibility
is a weaker probability estimate. The proof is based on an argument from [2] and the main result of [7].
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Theorem 7.There exist, ¢/ > 0 for which the following holds. Lef ¢ R” be star-shaped, sdt< k <n and$
such thatexp(—ck) <8 < 1, and let0 < ¢ < 1. Puta > 0, let 4 be an isotropicy, measure with constaint and
setX1, ..., Xy to be independent, distributed accordingitolf I = Zle(x,-, -Ye;, then with probability at least
1— 8, for anyt € T with ||t]| > r}'(e) we have(l — &) |t]|2 < |IT't]12/k < (L + #)|7]|?, wherer} (e) = rf (e, T) :=

inf{p > 0: £,(T N pS" 1) <ec’ pvVk/(log(1/8))}.
In particular, with probability at least. — 8, everyr e T satisfies|||? < max{(1 — &)L I't]|2/k, r} (e)?}.

Observe that Theorem 7 implies that with probability at leasts] thek co-dimensional section kétN T has
a diameter at most; (¢).

The parameters;(T) andr; (e, T) can be estimated in many cases. For example, using [6] one can estimate
them for7 the unit ball7),, of weak¢’, for 0 < p <1, or for ¢}, for 0 < p < oo, thus recovering and extending
results from [4,13]. We will only state here an almost isometric reconstruction estimate forfveak

Corollary 8. There isc > 0 such that the following holds. Lél < p < 1. Let 1 < k < n and § such that
exp(—ck) < 8 < 1/4, and letd > 0. Let u be an isotropicy, probability measure ofR” with constantx, and
let X3, ..., Xy be independent, distributed according o With probability at leastl — 6, for anyv, y € T, for

which (31— (X v — 3)2/k)Y2 < 0, we havely — v]| < c1(e. 8, p)(@ + (log(k/n)/k)/P~1/2), wherecy (a. 8. p)
depends o, § and p.

Proofs and related results will be presented elsewhere.
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