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Abstract

This Note presents a randomized method to approximate any vectorv from some setT ⊂ R
n. The data one is given is th

setT , andk scalar products(〈Xi, v〉)k
i=1, where(Xi)

k
i=1 are i.i.d. isotropic subgaussian random vectors inR

n, andk � n.

We show that with high probability anyy ∈ T for which (〈Xi, y〉)k
i=1 is close to the data vector(〈Xi, v〉)k

i=1 will be a good
approximation ofv, and that the degree of approximation is determined by a natural geometric parameter associated
setT . This extends and improves recent results by Candes and Tao.To cite this article: S. Mendelson et al., C. R. Acad. Sci.
Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Reconstruction et processus sous-gaussiens.Dans cette Note, on présente une méthode stochastique pour approc
vecteurv d’une partieT ⊂ R

n. Les données sont d’une partT et d’autre partk produits scalaires(〈Xi, v〉)k
i=1, où(Xi)

k
i=1 sont

des vecteurs aléatoires deR
n, indépendants de type sous-gaussiens, etk � n. On montre qu’avec une grande probabilité, to

y ∈ T pour lequel(〈Xi, y〉)k
i=1 est proche de(〈Xi, v〉)k

i=1 est une bonne approximation dev avec un degré d’erreur détermin
par un paramètre de la géométrie deT . Cette approche permet de généraliser et d’améliorer des résultats d’un récent tra
Candes et Tao.Pour citer cet article : S. Mendelson et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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The goal of this Note is to investigate the possibility of randomly reconstructing a signal or vector inR
n, taken

from a setT , using random projections. To be precise, suppose that one can select a probability measuµ on
R

n and letX1, . . . ,Xk be independent random vectors distributed according toµ. The reconstruction problem w
consider is as follows: the data we are given are the values of the projections of the unknown vectorv onXi – that
is, the set of values of scalar products〈Xi, v〉, and we study how to use this information (and the fact thatv ∈ T ) to
find somey ∈ R

n for which the Euclidean distance‖y − v‖ � ε(k), where this reconstruction error must hold w
high probability. For more information on reconstructions and related coding and decoding we refer to [4].

Questions of a similar flavor have been thoroughly studied in nonparametric statistics and statistical
theory (see, for example, [3,8] and references therein). Here, we use randomized methods developed in a
geometric analysis to prove a bound onε(k) in terms of the geometric structure of the setT .

The article [4] focuses on specific setsT – the�n
1 unit ball and the unit ball in weak�n

p space for 0< p < 1. Here
we show that the reconstruction process holds for anarbitrary setT ⊂ R

n (of course, the degree of approximati
depends on the geometry ofT ), and using a large class of measures onR

n that contains the Gaussian meas
and the uniform measure on{−1,1}n. In particular, for these measures we obtain the optimal estimates for th
considered above. The probability we get is exponentially rather than polynomially small. Let us mention
these sets and for the Gaussian measure exponentially small probability was obtained in [13] (using Ca
Tao’s general approach). In fact the�n

1 case follows from [5]. We also demonstrate that the same optimal estim
hold for a much wider family of measures.

Moreover we show that the reconstruction is robust to ‘noise’, in the sense that ify ∈ T , then to ensure tha
‖y − v‖ is ‘small’ it suffices to verify that the vector(〈Xi, y〉)ki=1 is close, but not necessarily identical, to the d
vector(〈Xi, v〉)ki=1.

It turns out that the reason why such results hold is that under mild assumptions on the probability m
µ and the setT , the randomk-dimensional projection operatorΓ = ∑k

i=1〈Xi, ·〉ei satisfies that kerΓ ∩ T has a
‘small’ diameter. Indeed, suppose for simplicity thatT is symmetric and convex and that for an unknownv ∈ T

we findy ∈ T which satisfies that〈Xi, y〉 = 〈Xi, v〉 for 1 � i � k. Thenv andy are in an affine section ofT with
Euclidean diameter less that the one ofT ∩ kerΓ . In other words, the fact that a kernel of random projectionΓ

generated byµ is a section of small diameter ofT suffices for the reconstruction process, and any point inT which
is in the same translate of kerΓ asv would be a good approximation. This argument was introduced in [9
approximating smooth functions.

To formulate the first technical tool, we require the following standard definition.

Definition 1. Let T ⊂ R
n and letg1, . . . , gn be independent, standard Gaussian random variables. Deno

�∗(T ) = Esupt∈T |∑n
i=1 giti |, wheret = (ti)

n
i=1 ∈ R

n.

We use the following formulation of the main result from [11] (see also [12]). Recall thatT ⊂ R
n is star-shaped

if t ∈ T and 0� λ � 1 impliesλt ∈ T .

Theorem 2.There are absolute constantsc andC for which the following holds. Let1� k � n, let X1, . . . ,Xk be
independentN(0, IRn) Gaussian random vectors inRn and letΓ = ∑k

i=1〈Xi, ·〉ei . Then, for every star-shaped s
T ⊂ R

n, with probability larger than1−exp(−ck) we havediam(kerΓ ∩T ) � inf{ρ > 0; �∗(T ∩ρBn
2 ) � Cρ

√
k}.

Remark 1. Although the above statement did not explicitly appear in [11], it follows immediately from the p
there. The parameter inf{ρ > 0; �∗(T ∩ ρBn

2 ) � Cρ
√

k} was introduced in [12].

A result similar to Theorem 2 (with the same probabilistic estimate) holds true for random±1-vectors – this
follows from the result in [1], as observed in [10].

We extend Theorem 2 by showing that the diameter of a ‘typical’k-codimensional section ofT is small,
even for other measures. Recall that theψp norm of a random variableX is defined as‖X‖ψp = inf{c > 0:
Eexp(|X|p/cp) � 2}.
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Definition 3. A probability measureµ on R
n is called isotropic if for everyy ∈ R

n, E|〈X,y〉|2 = ‖y‖2, where
X is distributed according toµ. A measureµ satisfies aψ2 condition with a constantα if for every y ∈ R

n,
‖〈X,y〉‖ψ2 � α‖y‖.

Perhaps the most important example of an isotropicψ2 probability measure onRn with a bounded constan
other than the Gaussian measure is the uniform measure on{−1,1}n. Naturally, if X is distributed according
to a general isotropicψ2 measure then the coordinates ofX need no longer be independent. For example,
normalized Lebesgue measure on an appropriate multiple of the unit ball in�n

p for 2 � p � ∞ is an isotropicψ2
measure with a constant independent ofn andp. For more details on such measures see [10]. Our extensi
Theorem 2 for isotropicψ2 probability measures is based on an approach from [7]. For its formulation we re
the notion of theγ2 functional [14].

Definition 4. For a metric space(T , d) let γ2(T , d) := inf supt∈T

∑∞
s=0 2s/2d(t, Ts), where the infimum is take

with respect to all sequences of subsetsTs ⊂ T with cardinality|Ts | � 22s
and|T0| = 1.

Theγ2 functional plays a central role in the theory of Gaussian processes. By the majorizing measure
(see [14] for the most recent survey on the topic) there are absolute constantsc1 andc2 such that if{Xt : t ∈ T }
is a Gaussian process, andd2

2(s, t) = E|Xs − Xt |2 is its covariance structure, thenc1γ2(T , d2) � Esupt∈T Xt �
c2γ2(T , d2).

The key lemma we require is the following estimate on the empiricalL2 diameter of a random coordina
projection of a set of functions. The proof is based on an argument from [7].

Lemma 5.There exista, c > 0 for which the following holds. Letα � 1 and letF be a class of functions on a prob
ability space(Ω,µ) such that for everyf,g ∈ F , ‖f ‖ψ2(µ) � α‖f ‖L2(µ), and‖f − g‖ψ2(µ) � α‖f − g‖L2(µ). Let
k � 1 and letX1, . . . ,Xk be independent, distributed according toµ. Then, with probability at least1−exp(−ak),
we havesupf ∈F (1

k

∑k
i=1 f 2(Xi))

1/2 � cα(supf ∈F (Ef 2)1/2 + γ2(F,‖ ‖L2(µ))/
√

k ).

The proof of theψ2 analog of Theorem 2 goes along the same lines as in [11], when Lemma 5 and Bern
inequality replace the probabilistic estimates required in the argument.

Theorem 6.For everyα � 1 there existc(α),C(α) > 0 for which the following holds. LetT ⊂ R
n be a star-shaped

set. Letα � 1, let µ be an isotropicψ2 probability measure with constantα. Let1 � k � n, and letX1, . . . ,Xk be
independent, distributed according toµ. LetΓ = ∑k

i=1〈Xi, ·〉ei . Then, with probability at least1− exp(−c(α)k),
diam(kerΓ ∩ T ) � r∗

k , wherer∗
k = r∗

k (T ) := inf{ρ > 0: �∗(T ∩ ρSn−1) � C(α)ρ
√

k }.

Applying Theorem 6 one can reconstruct anyv ∈ T using the data〈Xi, v〉 for a generalset T . Indeed, let
�T = {λ(t − v): t ∈ T , 0 � λ � 1}. Then, if t ∈ T satisfies〈Xi, v〉 = 〈Xi, t〉 thent − v ∈ kerΓ ∩ �T , and, with high
probability,‖t − v‖ � r∗

k (�T ). Of course, ifT happens to be convex and symmetric thenT − v ⊂ 2T which is star-
shaped and thus‖t − v‖ � r∗

k (2T ). In a more general case, whenT is symmetric and quasi-convex with consta
c � 1, i.e.,T + T ⊂ 2cT , then it is star-shaped andt − v ∈ kerΓ ∩ 2cT . Thus,‖t − v‖ � r∗

k (2cT ). This is the case
of the unit ballTp in weak�p (0 < p < 1) for which c = 21/p−1. (Recall thatTp is the set of allx = (xi) ∈ R

n

such that the cardinality|{i: |xi | � s}| � s−p for all s > 0.) Thus, the ability to approximate any point inT using
this kind of random sampling depends on the expectation of the supremum of a Gaussian process index
intersection ofT and a sphere of a certain radius.

Let us now formulate an ‘almost isometric’ version of the reconstruction theorem. By almost isomet
mean that in order to obtain a good reconstruction, it suffices that the vector(〈Xi, y〉)ki=1 is close to the data vecto
(〈Xi, v〉)ki=1. The benefit is that the reconstruction algorithm is more robust. The price paid for this added fle
is a weaker probability estimate. The proof is based on an argument from [2] and the main result of [7].



888 S. Mendelson et al. / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 885–888

t

timate
g

nk the

.), GAFA

n.upf.es/

English

0, 2004,

ings

Soc. 97 (4)

lyse Fonc-
rs and
Theorem 7.There existc, c′ > 0 for which the following holds. LetT ⊂ R
n be star-shaped, set1 � k � n and δ

such thatexp(−ck) � δ < 1, and let0 < ε < 1. Putα > 0, let µ be an isotropicψ2 measure with constantα and
setX1, . . . ,Xk to be independent, distributed according toµ. If Γ = ∑k

i=1〈Xi, ·〉ei , then with probability at leas
1− δ, for any t ∈ T with ‖t‖ � r∗

k (ε) we have(1− ε)‖t‖2 � ‖Γ t‖2/k � (1+ ε)‖t‖2, wherer∗
k (ε) = r∗

k (ε, T ) :=
inf{ρ > 0: �∗(T ∩ ρSn−1) � εc′ρ

√
k/(α log(1/δ))}.

In particular, with probability at least1− δ, everyt ∈ T satisfies‖t‖2 � max{(1− ε)−1‖Γ t‖2/k, r∗
k (ε)2}.

Observe that Theorem 7 implies that with probability at least 1− δ, thek co-dimensional section kerΓ ∩ T has
a diameter at mostr∗

k (ε).
The parametersr∗

k (T ) andr∗
k (ε, T ) can be estimated in many cases. For example, using [6] one can es

them forT the unit ballTp of weak�n
p for 0 < p � 1, or for �n

p, for 0< p < ∞, thus recovering and extendin
results from [4,13]. We will only state here an almost isometric reconstruction estimate for weak�n

p.

Corollary 8. There isc > 0 such that the following holds. Let0 < p < 1. Let 1 � k � n and δ such that
exp(−ck) � δ � 1/4, and letθ > 0. Let µ be an isotropicψ2 probability measure onRn with constantα, and
let X1, . . . ,Xk be independent, distributed according toµ. With probability at least1 − δ, for anyv, y ∈ Tp for
which(

∑k
i=1〈Xi, v − y〉2/k)1/2 � θ , we have‖y − v‖ � c1(α, δ,p)(θ + (log(k/n)/k)1/p−1/2), wherec1(α, δ,p)

depends onα, δ andp.

Proofs and related results will be presented elsewhere.
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