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Abstract

The following problem was formulated by Zorboska [Proc. Amer. Math. Soc. 131 (2003) 793–800]: It is not known
Berezin symbols of a bounded operator on the Bergman spaceL2

a(D) must have radial limits almost everywhere on the u
circle. In this Note we solve this problem in the negative, showing that there is a concrete class of diagonal operators
the Berezin symbol does not have radial boundary values anywhere on the unit circle. A similar result is also obtaine
of the Hardy spaceH2(D) over the unit diskD. Moreover, we give an alternative proof to the famous theorem of Beurlin
z-invariant subspaces in the Hardy spaceH2(D), using the concepts of reproducing kernels and Berezin symbols.To cite this
article: M.T. Karaev, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Quelques problèmes liés aux symboles de Berezin.Le problème suivant est formulé par Zorboska [Proc. Amer. Math.
131 (2003) 793–800] : les symboles de Berezin d’un opérateur borné sur l’espace de BergmanL2

a(D) ont-ils nécessairemen
des limites radiales presque partout sur le cercle unité ? Dans cet article, nous donnons une réponse négative à ce
en exhibant une classe concrète d’opérateurs diagonaux pour lesquels une telle limite n’existe en aucun point du c
Nous obtenons un résultat semblable dans le cas des espaces de HardyH2(D) sur le dique unitéD. De plus nous donnon
une nouvelle preuve, utilisant les notions de noyaux reproduisants et de symboles de Berezin, du célèbre théorème d
concernant les sous-espacesz-invariants deH2(D). Pour citer cet article : M.T. Karaev, C. R. Acad. Sci. Paris, Ser. I 340
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A functional Hilbert space is a collectionH of complex-valued functions on some setΩ such thatH is a Hilbert
space with respect to the usual vector operations on functions and which has the property that point evalua
continuous (i.e., for eachλ ∈ Ω , the mapf → f (λ) is continuous linear functional onH). Prototypical functiona
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Hilbert spaces are the Hardy spaceH 2(D) and the Bergman spaceL2
a(D) (for the definition and basic propertie

of these spaces see [12]).
If H is a functional Hilbert space, the Riesz representation theorem ensures that for eachλ ∈ Ω there is a unique

elementkλ of H such thatf (λ) = 〈f, kλ〉 for all f ∈ H. The collection{kλ: λ ∈ Ω}is called the reproducing kern
of H. It is well known (see, for instance [7], Problem 37) if{en} is an orthonormal basis for a functional Hilbe
spaceH onΩ , then the reproducing kernel ofH is given by

kλ(z) =
∑
n

en(λ)en(z). (1)

It is easy to verify that the reproducing kernels ofH 2(D) andL2
a(D) are given bykλ(z) = 1

1−λz
andkλ(z) = 1

(1−λz)2 ,

respectively.
For λ ∈ Ω , let k̂λ = kλ‖kλ‖ be the normalized reproducing kernel ofH. ForAa bounded linear operatorA onH,

the functionÃ defined onΩ by Ã(λ) = 〈Ak̂λ, k̂λ〉 for λ ∈ Ω is the Berezin symbol ofA. It is clear that the function
Ãis bounded by the numerical radius of the operatorA. It is also easy to see that on the most familiar functio
Hilbert spaces, including the spacesH 2(D)andL2

a(D), the Berezin symbol uniquely determines the operator (
Ã(λ) = B̃(λ) for all λ impliesA = B), see for instance, [11,1,2,5]; for more general case, see [4], Theorem
Thus the Berezin symbol of a bounded operator contains a lot of information about the operator. Zorboska
formulated the following natural and fundamental problem: it is not known if the Berezin transform of a bo
operator onL2

a(D) must have radial limits almost everywhere on the unit circle.
The present Note solves this problem negatively. Namely, we indicate a concrete class of diagonal o

on the Bergman spaceL2
a(D) for which the Berezin symbol does not have radial boundary values anywhe

the unit circleT (Theorem 2.2). A similar result is also proved in the Hardy spaceH 2(D). Moreover, we give an
alternative proof to the classical theorem of Beurling onz-invariant subspaces inH 2(D), using the techniques o
reproducing kernels and Berezin symbols.

2. Boundary behavior of Berezin symbols of operators on the Bergman and Hardy spaces

The Berezin symbol of an operatorAon the Bergman space has an explicit formula given by

Ã(λ) = (
1− |λ|2)2

∞∑
m,n=0

√
(n + 1)(m + 1)〈Aen, em〉λnλm, (2)

for z ∈ D, where the functionsen(z) = √
n + 1zn, n = 0,1, . . . , form the standard orthonormal basis for t

Bergman space. Before giving our results, we note the following:

Definition 2.1.The sequence{an}∞n=0 of the complex numbersan is Abel convergent (written (A) convergent) toa
if the limit

lim
t→1−(1− t)

∞∑
n=0

ant
n = a

exists.

Let S− andS∞− denote the set of all non-Abel convergent sequences of numbers and the set of all bound
Abel convergent sequences, respectively. It should be noticed that the existence of a bounded sequence,
Abel summable, is obvious, since the Abel method and therefore each ‘discrete (matrix-) Abel method’ is
and cannot sum each bounded sequence. Thus the setS∞− is non-empty.

Let us consider the difference equation

(n + 1)a − na = x , n = 0,1,2, . . . (3)
n n−1 n
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(we puta−1
def= 0). Elementary calculus shows that the solution of (3) is

an = 1

n + 1

n∑
i=0

xi, n � 0.

Consequently, for any given{xn} ∈ S∞− the sequence{an}n�0
def= { 1

n+1

∑n
i=0 xi}n�0 is bounded and{(n + 1)an −

nan−1}n�0 ∈ S∞− .
The following is our main result in this section, which solves Zorboska’s problem in the negative.

Theorem 2.2.Let {an}n�0 be a bounded sequence of numbers such that {(n+1)an−nan−1}n�0 ∈ S−, and let D{an}
be a diagonal operator with respect to the standard orthonormal basis en(z) = {√n + 1zn}n�0 of the Bergman
space L2

a(D). Then the Berezin symbol D̃{an} of the operator D{an} has no radial limits anywhere on the unit
circle T.

Proof. By settingA = D{an}in the formula (2), we have

D̃{an}(λ) = (
1− |λ|2)2

∞∑
m=0

(m + 1)am|λ|2m

for all λ ∈ D. Hence simple calculus shows that

D̃{an}(λ) = (
1− |λ|2)

∞∑
m=0

[
(m + 1)am − mam−1

]|λ|2m, (4)

λ ∈ D (i.e.,D̃{an} is a radial function,̃D{an}(λ) = D̃{an}(|λ|)). Since by condition of theorem,{(m+1)am −mam−1}
is not(A)-convergent sequence, it follows from (4) that the Berezin symbolD̃{an} of the operatorD{an} has no radia
limits anywhere on the unit circleT. The proof is completed. �

Our next result shows that there exist linear bounded operators on the Hardy spaceH 2(D) such that their Berezin
symbols have no radial boundary values on a unit circle.

Theorem 2.3.Let {an}n�0 ∈ S∞− be any sequence. Then the Berezin symbol of the diagonal operator D{an}zn =
anz

n, n � 0, where {zn}n�0 is a standard orthonormal basis of the Hardy space H 2(D), has no radial limits
anywhere on the unit circle T.

Proof. Simple calculus shows that

D̃{an}(λ) = (
1− |λ|2)

∞∑
k=0

ak|λ|2k, λ ∈ D, (5)

(i.e., D̃{an} is a radial function,̃D{an}(λ) = D̃{an}(|λ|)). Considering that{an} is not (A) convergent sequence,
follows from (5) thatD̃{an}(λ) has no radial limits anywhere on a unit circle, which completes the proof.�

Other applications of the formula (5) can be found in [9,8,10].

3. A new proof of Beurling’s theorem

Let S be the unilateral shift operator on the Hardy spaceH 2(D) defined by(Sf )(z) = zf (z). The invariant
subspaces ofS are characterized by following famous Beurling’s theorem.
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Theorem 3.1(Beurling [3]).Every non-trivial invariant subspace of the shift operator S on the Hardy space H 2(D)

has the form θH 2(D) for some inner function θ .

In this section we shall give an alternative proof to the Beurling’s theorem. Our proof uses the techn
reproducing kernels and Berezin symbols. We believe that our proof is much simpler (both technically an
logically) and shorter than the original.

Proof of Theorem 3.1. Let E ⊂ H 2(D) be a non-trivial (i.e.,{0} 	= E 	= H 2(D)) invariant subspace of the sh

operatorS, that iszE ⊂ E. It is clear thatkE
λ (z)

def= PEkλ(z), wherekλ(z) = 1
1−λ̄z

is the reproducing kernel o

H 2(D), is the reproducing kernel ofE. Since(1− λ̄z) kE
λ (z)is the reproducing kernel for the subspaceE 
 zEand

dim(E 
 zE) = 1, by considering (1), one has(1− λ̄z)kE
λ (z) = θ(λ)θ(z) for someθ ∈ E 
 zE with ‖θ‖ = 1, and

hence(
1− |λ|2)kE

λ (λ) = ∣∣θ(λ)
∣∣2, λ ∈ D. (6)

On the other hand, it is not hard to check that(
1− |λ|2)kE

λ (λ) = P̃E(λ), λ ∈ D. (7)

From (6) and (7), we obtain that

P̃E(λ) = ∣∣θ(λ)
∣∣2, λ ∈ D. (8)

We shall now prove thatθ is inner function. For this, by virtue of (8), it suffices to prove that

P̃E(ζ ) = 1 a.e. onT. (9)

The proof of (9) is the same as the proof of Theorem 2.1 in [6] and we omit it.
Thusθ is an inner function. It is easy to verify that

P̃θH2(D)(λ) = ∣∣θ(λ)
∣∣2, λ ∈ D. (10)

Now it follows from (8) and (10) that̃PE(λ) = P̃θH2(D)(λ) for all λ ∈ D, which implies (see [11,4]) thatPE =
PθH2(D), and henceE = θH 2(D). Theorem 3.1 is proved.�
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