

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 340 (2005) 751-754

http://france.elsevier.com/direct/CRASS1/

Differential Geometry/Algebraic Geometry

Corrigendum to the Note "Symplectic capacities of toric manifolds and combinatorial inequalities" [C. R. Acad. Sci. Paris, Ser. I 334 (10) (2002) 889–892]

Guangcun Lu¹

Department of Mathematics, Beijing Normal University, Beijing 100875, PR China

Received 14 December 2004; accepted after revision 5 April 2005

Available online 4 May 2005

Presented by Jean-Pierre Demailly

Abstract

In this Note we correct some results in Lu, Symplectic capacities of toric manifolds and combinatorial inequalities [C. R. Acad. Sci. Paris, Ser. I 334 (10) (2002) 889–892] on (pseudo) symplectic capacities for toric manifolds. *To cite this article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 340* (2005).

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Capacités symplectiques de variétés toriques et des associés résultats. Daus cette Note, nous corrigeons des résultats associés dans Lu, Symplectic capacities of toric manifolds and combinatorial inequalities [C. R. Acad. Sci. Paris, Ser. I 334 (10) (2002) 889–892] sur les capacités (pseudo) symplectiques de variétés toriques. *Pour citer cet article : G. Lu, C. R. Acad. Sci. Paris, Ser. I 340* (2005).

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

The notion of the pseudo symplectic capacity was introduced by the author in [3,4]. ($\widehat{C}_{HZ}^{(2)}$ in [4] was written as $C_{HZ}^{(2\circ)}$ in the recent [3], v9 in view of some reader's suggestion.) In [4] three theorems were announced based on the author's work in [3] and Batyrev's computation for the quantum cohomology of the toric manifolds in [1]. However, Batyrev's results in [1] were true only for Fano toric manifolds. So our results in [4] can only hold for this class of manifolds. That is, Theorems 1, 2 in [4] should be written as:

DOI of original article: 10.1016/S1631-073X(02)02357-9.

E-mail address: gclu@bnu.edu.cn (G. Lu).

¹ Partially supported by the NNSF 19971045 and 10371007 of China.

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2005.04.016

Theorem 1. For a complete regular fan Σ in \mathbb{R}^n , let $G(\Sigma) = \{u_1, \ldots, u_d\}$ be the set of all generators of 1-dimensional cones in Σ , and P_{Σ} be the compact toric manifold associated with Σ . Assume that φ is a strictly convex support function for Σ representing a Kähler form on P_{Σ} , and that $\Delta_{\varphi} = \{x \in (\mathbb{R}^n)^* \mid \langle x, m \rangle \ge -\varphi(m) \forall m \in \mathbb{R}^n\}$ is the corresponding Delzant polytope in $(\mathbb{R}^n)^*$. If P_{Σ} is also Fano, i.e., the anticanonical divisor $-K_{P_{\Sigma}}$ is ample, then

$$\Upsilon(\Sigma,\varphi) := \inf\left\{\sum_{k=1}^{d} \varphi(u_k)a_k > 0 \ \middle| \ \sum_{k=1}^{d} a_k u_k = 0, \ a_k \in \mathbb{Z}_{\ge 0}, \ k = 1, \dots, d \right\} > 0,$$
(1)

and the Gromov width W_G and pseudo symplectic capacities $C = C_{HZ}^{(2)}, C_{HZ}^{(2\circ)}$ satisfy:

$$\mathcal{W}_G(\mathbf{P}_{\Sigma},\varphi) \leqslant C\left(\mathbf{P}_{\Sigma},\varphi;\,pt,\,PD\big([\varphi]\big)\right) \leqslant \Upsilon(\Sigma,\varphi) \quad \forall n \ge 2.$$
⁽²⁾

Moreover, whether P_{Σ} is Fano or not it always holds that

$$\mathcal{W}_{G}(\mathsf{P}_{\Sigma},\varphi) \geqslant \frac{1}{2\pi} \mathcal{W}_{G}\big(\mathrm{Int}(\Delta_{\varphi}) \times \mathbb{T}^{n}, \omega_{\mathrm{can}}\big),\tag{3}$$

where $(\text{Int}(\Delta_{\varphi}) \times \mathbb{T}^{n}, \omega_{\text{can}}) = (\{(x, \theta) \mid x \in \text{Int}(\Delta_{\varphi}), \theta \in \mathbb{R}^{n}/2\pi\mathbb{Z}^{n}\}, \sum_{k=1}^{d} dx_{k} \wedge d\theta_{k}).$ If X_{Δ} is a Fano toric manifold associated with Delzant polytope in $(\mathbb{R}^{n})^{*}$

$$\Delta = \bigcap_{k=1}^{d} \left\{ x \in (\mathbb{R}^n)^* \mid l_k(x) := \langle x, u_k \rangle - \lambda_k \ge 0 \right\}$$
(4)

and ω_{Δ} is the canonical symplectic form on it then

$$\Upsilon(\Delta) := \inf\left\{-\sum_{k=1}^{d} \lambda_k a_k > 0 \ \Big| \ \sum_{k=1}^{d} a_k u_k = 0, \ a_k \in \mathbb{Z}_{\ge 0}, \ k = 1, \dots, d\right\} > 0$$
(5)

and it holds that for $C = C_{HZ}^{(2)}$, $C_{HZ}^{(2\circ)}$ and any $n \ge 2$,

$$\mathcal{W}_G(X_\Delta, \omega_\Delta) \leqslant C(X_\Delta, \omega_\Delta; pt, PD([\omega_\Delta])) \leqslant 2\pi \cdot \Upsilon(\Delta).$$
(6)

Furthermore, if $Vert(\Delta)$ denotes the set of all vertices of Δ and $E_p(\Delta)$ is the shortest distance from the vertex p to the adjacent n vertexes, then for any capacity function c,

$$2\pi \cdot \max_{p \in \operatorname{Vert}(\Delta)} E_p(\Delta) \leqslant c(X_\Delta, \omega_\Delta) \tag{7}$$

whether X_{Δ} is Fano or not.

In general case we have:

Theorem 2. Let P_{Σ} be the compact toric manifold associated with a complete regular fan Σ in \mathbb{R}^n with $G(\Sigma) = \{u_1, \ldots, u_d\}$. For a strictly convex support function φ (for Σ) representing a Kähler form on P_{Σ} let $\Lambda(\Sigma, \varphi)$ be the maximum of $\sum_{i=1}^{d} \varphi(u_i)a_i$ for which $(a_1, \ldots, a_d) \in \mathbb{Z}_{\geq 0}^n$ satisfies $\sum_{i=1}^{d} a_i u_i = 0$ and $1 \leq \sum_{i=1}^{d} a_i \leq n+1$. Then for $C = C_{HZ}^{(2)}, C_{HZ}^{(2o)}$,

$$0 < \Lambda(\Sigma, \varphi) \leq (n+1) \max_{i} \varphi(u_i) \quad and$$
(8)

$$\mathcal{W}_G(\mathsf{P}_{\Sigma},\varphi) \leqslant C\big(\mathsf{P}_{\Sigma},\varphi;\,pt,\,PD\big([\varphi]\big)\big) \leqslant \Lambda(\Sigma,\varphi) \quad \forall n \ge 2.$$
(9)

If $(X_{\Delta}, \omega_{\Delta})$ is the toric manifold associated with the Delzant polytope $\Delta \subset (\mathbb{R}^n)^*$ in (4), but it might not be Fano, and $\Lambda(\Delta) (= \Lambda(\Sigma_{\Delta}, \omega_{\Delta}))$ is the maximum of $-2\pi \sum_{i=1}^d \lambda_i a_i$ for all $(a_1, \ldots, a_d) \in \mathbb{Z}_{\geq 0}^n$ satisfying $\sum_{i=1}^d a_i u_i = 0$ and $1 \leq \sum_{i=1}^d a_i \leq n+1$, then

$$\Lambda(\Delta) \leqslant -2\pi (n+1) \min_{i} \lambda_i \quad and \tag{10}$$

$$2\pi \mathcal{W}(\Delta) \leqslant \mathcal{W}_G(X_\Delta, \omega_\Delta) \leqslant C(X_\Delta, \omega_\Delta; pt, PD([\omega_\Delta])) \leqslant \Lambda(\Delta)$$

$$for \ C = C_{HZ}^{(2)}, C_{HZ}^{(2\circ)}.$$
(11)

The projective toric manifolds are uniruled. The following proposition is a key to prove Theorem 2. Its proof may directly be obtained by combining Kollar's arguments in [2] and the proof of Proposition 7.3 in [3], v9, cf., [5].

Proposition 3. For a uniruled manifold X of positive dimension n there exist homology classes $A \in H_2(X; \mathbb{Z})$ with $1 \leq c_1(A) \leq n+1$, $\alpha \in H_{2n-2}(X, \mathbb{Q})$ and $\beta \in H_*(X; \mathbb{Q})$ such that

$$\Psi_{A,0,3}(pt; pt, \alpha, \beta) \neq 0. \tag{12}$$

In particular, this implies that there is a rational curve C with $0 < (-K_X \cdot C) \le n + 1$ through any general point of X.

The final claim in Proposition 3 was first proved by Mori for Fano manifolds. In general case Mori [6] told the author that it can be immediately obtained from Kollar's modification on a result in Proc. ICM90 by him. Our method as a consequence of (12) actually suggested possible further generalizations.

An outline of proof of Theorem 2. We only need to prove (8) and the second inequality in (9). (See [5] for the related details, notions and notations.) Since P_{Σ} is uniruled, Proposition 3 yields homology classes $A \in H_2(P_{\Sigma}; \mathbb{Z})$ with $1 \leq c_1(A) \leq n + 1$, $\alpha \in H_{2n-2}(P_{\Sigma}, \mathbb{Q})$ and $\beta \in H_*(P_{\Sigma}; \mathbb{Q})$ such that $\Psi_{A,0,3}(pt; pt, \alpha, \beta) \neq 0$. Since the Gromov–Witten invariants are deformation invariants it follows that $\langle [\varphi], A \rangle = \sum_{i=1}^{d} \varphi(u_i)\mu(A)_i > 0$ for any $\varphi \in K^{\circ}(\Sigma)$. Note that $K(\Sigma)$ is the closure of $K^{\circ}(\Sigma)$ in $H^2(P_{\Sigma}, \mathbb{R})$. So $\langle [\psi], A \rangle = \sum_{i=1}^{d} \psi(u_i)\mu(A)_i \geq 0$ for any $\psi \in K(\Sigma)$. In particular we get that $\mu(A)_l = \sum_{i=1}^{d} \varphi_l(u_i)\mu(A)_i = \langle [\varphi_l], A \rangle \geq 0$, $l = 1, \ldots, d$. These show that A is very effective. By Theorem 2.1 in [5], $c_1(A) = \sum_{i=1}^{d} \mu(A)_i$ and thus $1 \leq \sum_{i=1}^{d} \mu(A)_i \leq n + 1$. The definition of $\Lambda(\Sigma, \varphi)$ directly leads to

$$0 < \langle [\varphi], A \rangle = \sum_{i=1}^{d} \varphi(u_i) \mu(A)_i \leq \Lambda(\Sigma, \varphi).$$

By the definition of $GW_0(M, \omega; pt, \alpha)$ in Definition 1.9 of [3], v9 we get that

 $\operatorname{GW}_0(\operatorname{P}_{\Sigma},\varphi; pt, PD([\varphi])) \leq \Lambda(\Sigma,\varphi).$

Moreover it is clear that

$$\sum_{i=1}^{a} \varphi(u_i)\mu_i \leqslant \sum_{\varphi(u_i)>0} \varphi(u_i)\mu_i \leqslant (n+1)\max_i \varphi(u_i)$$

for each $\mu \in \mathbb{Z}_{\geq 0}^n$ satisfying $\sum_{i=1}^d \mu_i u_i = 0$ and $1 \leq \sum_{i=1}^d \mu_i \leq n+1$. The desired results may be obtained from Theorem 1.13 in [3], v9. \Box

It is well-known that the blow-ups of a toric manifold at its toric fixed points are also toric manifolds. However, the blow up of a toric Fano manifold is not necessarily Fano again.

Theorem 4. Let $P_{\widetilde{\Sigma}}$ be a toric manifold obtained by a sequence of blowings up of a toric Fano manifold at toric fixed points. So $G(\Sigma) = \{u_1, \ldots, u_d\} \subset G(\widetilde{\Sigma})$. Then for any strictly convex support function φ for $\widetilde{\Sigma}$ (also strictly convex for Σ) it hold that

$$\mathcal{W}_{G}(\mathbf{P}_{\widetilde{\Sigma}},\varphi) \leqslant C\left(\mathbf{P}_{\widetilde{\Sigma}},\varphi;\,pt,\,PD\big([\varphi]\big)\right) \leqslant 2\pi \cdot \Upsilon(\Sigma,\varphi)$$

753

for $C = C_{HZ}^{(2)}$, $C_{HZ}^{(2\circ)}$ and any $n \ge 2$. Here $\Upsilon(\Sigma, \varphi) > 0$ is given by (1) though $\Upsilon(\widetilde{\Sigma}, \varphi)$ might equal to zero in the case $P_{\widetilde{\Sigma}}$ is not Fano.

A correction to Example (ii) in [4]. Let e_1^* , e_2^* and e_3^* be the dual basis of the standard basis e_1 , e_2 and e_3 in \mathbb{R}^3 , and Δ be a Delzant polytope with vertices $v_0 = 0$, $v_1 = e_1^*$, $v_2 = e_2^*$ and $v_3 = e_3^*$. It is well-known that the corresponding toric manifold $(X_{\Delta}, \omega_{\Delta})$ is exactly (\mathbb{CP}^3 , $2\omega_{FS}$), where the Fubini–Study ω_{FS} is assumed to satisfy $\int_{\mathbb{CP}^1} \omega_{FS} = \pi$. For 0 < a < 1 consider a Delzant polytope $\Delta_a \subset (\mathbb{R}^3)^*$ with vertices $v_0 = 0$, $v_1 = e_1^*$, $v_2 = e_2^*$, $v_3 = ae_2^* + ae_3^*$, $v_4 = ae_3^*$, $v_5 = ae_1^* + ae_3^*$. Clearly, the normal vectors to the 2-dimensional faces of Δ_a are $u_1 = e_1^*$, $u_2 = e_2^*$, $u_3 = e_3^*$, $u_4 = -e_3^*$, $u_5 = -e_1^* - e_2^* - e_3^*$. So $\Delta_a = \bigcap_{k=1}^5 \{x \in (\mathbb{R}^3)^* \mid \langle x, u_k \rangle - \lambda_k \ge 0\}$, where $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and $\lambda_4 = -a$, $\lambda_5 = -1$. The associated toric manifold $(X_{\Delta_a}, \omega_{\Delta_a})$ is exactly the blow-up of (\mathbb{CP}^3 , $2\omega_{FS}$) of weight 2(1-a) at a fixed point of \mathbb{T}^3 -action on (\mathbb{CP}^3 , $2\omega_{FS}$). From Theorem 2 it follows that $\Lambda(\Delta_a) \le -8\pi \min_i \lambda_i = 8\pi$ and

$$\mathcal{W}_G(X_{\Delta_a}, \omega_{\Delta_a}) \leqslant C(X_{\Delta_a}, \omega_{\Delta_a}; pt, PD([\omega_{\Delta_a}])) \leqslant 8\pi$$
(13)

for $C = C_{HZ}^{(2)}$, $C_{HZ}^{(2\circ)}$. In particular, if a = 1/2 we can use Theorem 2.5 in [5] to check that $(X_{\Delta_{1/2}}, \omega_{\Delta_{1/2}})$ is Fano. By Theorem 1 we may get $\Upsilon(\Delta_{1/2}) = 1/2$ and (13) can be strengthen as:

 $\mathcal{W}_G(X_{\Delta_{1/2}},\omega_{\Delta_{1/2}}) \leqslant C_{HZ}(X_{\Delta_{1/2}},\omega_{\Delta_{1/2}};pt,PD([\omega_{\Delta_{1/2}}])) \leqslant \pi.$

Theorem 4 in [4] should be *corrected* as:

Theorem 5. Let Σ be a complete regular fan in \mathbb{R}^n . Then for any ample line bundle $L \to P_{\Sigma}$ and any strictly convex support function φ_L representing the class $c_1(L)$ it holds that

 $\varepsilon(L) \leqslant 2\pi \cdot \Lambda(\Sigma, \varphi_L)$

and that $\varepsilon(L) \leq 2\pi \cdot \Upsilon(\Sigma, \varphi_L)$ if P_{Σ} is also Fano. Here $\varepsilon(L)$ is the Seshadri constant of L.

Acknowledgements

I am deeply grateful to ICTP in Italy and IHES at Paris for their financial support and hospitality.

References

- [1] V.V. Batyrev, Quantum cohomology rings of toric manifolds, Astérisque 218 (1993) 9-34.
- [2] J. Kollár, Low degree polynomial equations: arithmetic, geometry and topology, in: Progr. Math., vol. 122, Birkhäuser, 1994, pp. 255–288.
- [3] G.C. Lu, Gromov-Witten invariants and pseudo symplectic capacities, math.SG/0103195, v6, 6 September 2001, and v9, 3 December 2004, Israel J. Math, in press.
- [4] G.C. Lu, Symplectic capacities of toric manifolds and combinatorial inequalities, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 889-892.
- [5] G.C. Lu, Symplectic capacities of toric manifolds and related results, math.SG/0312483.
- [6] S. Mori, an email communication.