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Abstract

We propose a slight modification of the properties of a spectral geometry a la Connes, which allows for some of the algebraic
relations to be satisfied only modulo compact operators. On the equatoriabPRptilere we construst, (su2))-equivariant
Dirac operator and real structure which satisfy these modified propertieste this article: L. Dabrowski et al., C. R. Acad.
Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La géométrie spectrale de la sphére «équatoriale» de Podles. Nous présentons une version légerement modifiée des
axiomes de la géométrie spectrale (réelle) au sens de Connes, qui permettent aux relations algébriques d’'étre satisfaites modul
les opérateurs compacts. Nous montrons que la sphéere quantique « égquatoriale »$lesPodle géométrie spectrale et nous
déterminons I'opérateur de Dirac et la structure réelle correspond@mteciter cet article: L. Dabrowski et al., C. R. Acad.

Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Recent examples of noncommutative spectral geometries on spaces coming from quantum groups [2,7,4,14,11,8
have opened a new interesting and promising area of research. Along these lines, by introducing a slight modifi-
cation of the defining properties of a noncommutative geometry, we present a construction of a spectral geometry
for the equatorial Podﬁasphereig of [13]. Both the Dirac operatob and the real structuré will be equivariant

under the action o, (su(2)) on S7.
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With ¢ a real number, & ¢ < 1, we denote byA(Sg) the algebra of polynomial functions generated by opera-
torsa, a* andb = b*, which satisfy the following commutation rules:

ba =q%ab, a*b=q%ba*, a*a+b*=1, q%aa*+q b*=q°.
This algebra contains &t-worth of classical points (the ‘equator’) given by the one dimensional representations
b=0,a=xwith » € 1.
The symmetry of the sphere, which we shall use for the equivariance, is the Hopf algebra module structure with
respect to thé/, (su(2)) Hopf algebra and derived from the canonibiglsu2)) action on thed(SU, (2)) algebra.
Explicitly, the generators, f, k of U, (su2)) act on the generators ot(Sg) in the following way:

ksa=gqa, ksb=b, esa=—1+¢>q %, evb=qg%a",

fra=0, feb=—¢"%a, kva*=qg ta*, era*=0, fra*=1+q>q .
We shall use the fact that the irreducible finite dimensional representations of the Hopf dlgétue?)) are

labelled by a positive half-integers (see [10], for example) and each representatiofvspasea basi§|/, m), m €
{—=1,—-1+1,...,1}} declared to be orthonormal.

@

2. Variations on spectral geometry

A spectral geometry (a la Connes) are dadan, H, v, J, D) fulfilling a series of requirements [3].

On the equatorial spherd = A(Sg) we construct an equivariant spectral geometry [16], starting from an
equivariant representation on a suitable Hilbert spack. On the latter there are an equivariant real structure
J and an equivariant Dirac operatdr. However, with such & it is not possible to satisfy all the requirements
of [3]. Nevertheless, as we shall see, the algebraic requirements shall be obeyed up to compact operators. In par
ticular, the antilinear isometry which provides the real structure, will mag.A) to its commutant only modulo
compact operators.

Vi, ye A [r(), Jx(»J ek, 2
and the first order condition is valid only modulo compact operators,
Vx,ye A [Jrr(x)J_l, [D,rr(y)]] ek. (©)

The essentially unique Dirac operator, which comes out as the solution of the above condition, shall have the crucial
property that all commutatof®, = (x)], x € A(Sg), are bounded.

3. The equivariant geometry of A(S2)

A fully equivariant approach, both for the real structure and the Dirac operator was worked out for the standard
Podles sphere in [7]. Here we build up on this and an earlier approach [9] (see also [12]) to construct an equivariant
spectral geometry of the Equatorial Pdd#phere.

The starting ingredient of the equivariant spectral geometry, which we are about to construct is a equivariant
representation Qﬂ(qu) on a Hilbert spacé{. Let us recall that af{ -equivariant representation of @&h-module
algebrad onH, is a representatiom of A onH and a representatignof H on a dense subspace&fsuch that
for everya € A andh € H andv from a dense subspace we have:

p(h)m(@)v=r(hay>a)p(h@)v. 4)

In our case, this is the same as a representation of the crossed protiycsaPR)) x A(S(f) on a dense subspace
of the Hilbert space. The general theory for the entire family of Posideres is in [15].
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Proposition 3.1. There exists two irreduciblé, (su(2))-equivariant representatior(slenoted byr..) of the algebra
A(S2) on the Hilbert spacé{), = @z:%,g V; given by

yens

m—1/2
Tfi(a)ﬂ’m)=i(1+q2)[2;]][271+2]\/[l+m+1][1—m] |l,m+1)
qm—l—1/2
+m\/[l—i-m—f-1][l+m+2]|l+1,m+1)
qm+l+l/2
BT Vii—mlll—m—=1]|l —1,m+ 1),
1
ni(b)|l,m)=im([l—m+1][l+m]—qz[l—m][l—l-m—i-l])ll,m)
- - 9 - - — 4 )
g VI~ A m o+ 2+ Lom) = el =l ]l = 1,m) ©)

with 7 (a*) being the Hermitian conjugate ef(a) and[x]:= (g — ¢ 1)~ 1(¢* —¢™).

The proof is a long but straightforward calculation based on the covariance property (4) with the natural repre-
sentatiorp of U, (su2)) onH;, and thel{, (su2))-module structure oﬂ(S(f) given in (1). The representations
are equivalent to the left regular representatiotd¢gU, (2)) on L2(SUq(2)) (with the Haar measure) when this
representation is restricted to the subalgeﬂ)(aj) and the representation space is restricted totRecpmpletion)
of certain vector spaces (Ieﬁ(Sg)—moduIes) constructed in [1].

We take as the Hilbert space of our geométty= H;, & H,, with the natural grading = id & (—id) and the
representation (x) = 7 (x) @ 7_(x) for anya € A(qu), which is equivariant with respect to the diagonal action
(which we call agairp) of U/, (sw2)) on . As in [7], we follow the method of equivariance to find first the real
structure/. Let us recall, tha¥ is the antiunitary part of an antilinear operafoon 7, which must then satisfy for
anyh € U, (su2)) (on a dense subspace®), p(h)T = Tp(Sh)*. Taking into account the required commutation
relations with the grading, thatisy J = —Jy andJ2 = —1, one easily obtain that must be,

I m) s =12"|1, —m)=, (6)
where the labett refers to the two copies dff;, which are marked by the eigenvalues)af With this data we
immediately meet an obstruction:

Proposition 3.2. The operator/ defined above does not satisfy the ‘commutant’ requirement of a real spectral
triple, that is, there exist € A(S?2) for which Jz (x)J 1 is not in the commutant of (A(S2)).

Then, we move on to look for a variation of spectral geometry up to infinitesimal, as introduced earlier. Let
K denote the ideal of compact operators7@rand K, C K be the ideal generated by operatdss of the form
Lyll,m)s = q'll,m)+.

Proposition 3.3. The operator/, defined in(6), mapSn(A(Sg)) to its commutant modulo compact operat(rs
fact moduloiC,). More precisely, for any, y € A(qu),

[7(x), Jm ()T 7] e K. (7)

To prove this proposition, it is convenient to use compact perturbations of the represemteficoact formulse
shall be contained in the extended version of this Note.
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As a next step we derive the Dirac operaforBeside postulating thad anticommutes withy and commutes
with J, we shall also require thd is equivariant, that is it commutes with the representgtioni/, (Su2)) onH.
Each operator satisfying these condition must be of the form

Dll,m)s =dF |l,m)x, dF eR. (8)
Proposition 3.4. Up to rescaling and addition of an odd constant as well as of an odd elementkfgrthere

exists only one operataP of the form(8) which satisfies the order-one condition up to compact operdtorfact
modulok,), that is for all.x, y € A(S2),

[ )L [D, n(»)]] € Ky )

For this operatorD, the parameterdli are given byl," =d; =1+

Nl

The condition (9) has been verify explicitly for all pairs of generatorsal()s,f) with the help of a symbolic
computation program. Furthermore, we have,

Proposition 3.5. For anyx € A(S,?), the commutatorgD, 7 (x)] are bounded.

It is evident that the operataD is self-adjoint on a natural domain i and that its resolvent is compact.
Since the spectrum ¢D| consists only of eigenvalugés=1 + % € N with multiplicity 4k, we managed to realize
the suggestion in [5] to usB with a classical spectrum. Thus, the deformation being isospectral, the dimension
requirement is satisfied with the spectral dimensionA:(f.S(?), ‘H, D) beingn = 2.

We have made some advancement in the study ofjtgeometry and expect that similar structures exist on
otherg-deformed spaces. There are still many points to be addressed, notable the existence of a volume form and
the fulfillment of other axioms of spectral geometries. These points shall be addressed in the extended version of
the note. A spectral triple for SI42) which is isospectral is presented in [6].
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