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Abstract

In this Note, we study the unfolding of a vector field that possesses a degenerate homoclinic (of inclination-flip
a hyperbolic equilibrium point where its linear part possesses a resonance. For the unperturbed system, the reso
associated with the resonance vanishes. After suitable rescaling, the Poincaré return map is a cubic Hénon-like map.
the existence of a strange attractor which persists in the Lebesgue measure sense. We also show the presence of
with topological entropy close to log 3.To cite this article: M. Martens et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une application de type Hénon cubique dans le déploiement d’une orbite homocline dégénérée avec résonance. Nous
étudions le déploiement d’un champ de vecteurs surR

3 qui possède une orbite homocline dégénérée associée à une sing
hyperbolique. La partie linéaire du champ en cette singulartité posssède une résonance mais, pour le système initia
résonant associé à cette résonance disparaît. Nous montrons qu’après changement d’échelle, l’application de retour
sur une section transverse est proche d’ une application de Hénon cubique. Un attracteur étrange est présent et pers
de la mesure de Lebesgue. Nous montrons également la présence d’un attracteur avec une entropie topologique proc
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1. Introduction

In dynamical systems, from the bifurcation theoretical point of view, homoclinic orbits play an importan
To understand the dynamics that appear after perturbation of such a system, many studies have been
in the codimension one case [21], but also in the codimension two case [3,4,6,11,18,20] and latter [1
the codimension three case. To really understand the bifurcations around this homoclinic orbit we nee
specific information about this orbit. This information can be topological but also analytical and implies in g
geometrical considerations [3,4,10,11,14,19]. For instance Homburg et al. study the bifurcations that aris
unfolding of aninclination-fliphomoclinic orbit onR3 and show that a suspended horseshoe is present in a tu
neighbourhood of the unperturbed homoclinic orbit. In this context, the additional degeneracy of the hom
orbit comes from a non transversallity condition (see details below). Rychlik [19] shows that a geometrical
attractor is present in the phase portrait of a three-dimensional vector field that unfolds a double inclina
homoclinic orbit with aZ2 symmetry. Earlier, Robinson [18] shows the same result when the non transver
condition is replaced by a resonant condition: the sum of two eigenvalues of the linear part of the vector
the singularity vanishes. The presence of complicated dynamics here is due to the change of the dynam
attracting to expanding inside the extended unstable manifold. However, the presence of a resonant term a
with the resonance does not contribute to any qualitative change of the dynamic.

In this Note, we propose a scenario similar to that of [11] where the appearance of a resonant term y
qualitative changes of the dynamics. This will involve four degeneracy conditions.

Let Xp, p ∈ D ⊂ R
4, 0∈ int(D) be a family of smooth vector-field onR3, with the originO being a hyperbolic

equilibrium point.DXp(O) has three real eigenvalues−α(p) < −β(p) < 0 and�(p) > 0. We put�(p) ≡ 1, this
can be obtained by a time rescaling. This implies thatO possesses a local stable manifoldWs

loc of dimension 2 and
a local unstable manifoldWu

loc of dimension 1. Sinceα(0) > β(0), there also exists a local strong stable manif
Wss

loc, that belongs to the local stable manifold and its tangent space at the equilibrium point is spanned
eigenspace associated with−α(p). We extend these manifolds by the flow and denote their extension byWs , Wu

andWss respectively. These manifolds are smooth, unique and invariant under the flow. However, ther
a local invariant manifoldWu,s

loc containingWu
loc, called anextended unstable manifold, its tangent space at th

equilibrium point is spanned by the eigenspaces associated with the eigenvalues−β and 1. This manifold is no
unique but its tangent space along the unstable manifold does not depend on the choice of the extended
manifold. In generalWu,s

loc is only C1 [7]. We shall assume the familyXp to satisfy the following conditions. Th
first conditions concern the global dynamics ofX0 and the others concern the local dynamics near the origin.

(i) X0 possesses a non degenerate inclination-flip homoclinic orbit, see below for more details,
(ii) α(0) = 2β(0) which is a resonant condition. The associated family of germs then take the following n

form

Xp(x, y, z) = Yp + λ(p)z2∂/∂y + Gp(x, y, z), (1)

whereYp = x ∂
∂x

− α(p)y ∂
∂y

− β(p) ∂
∂z

is the linear part and‖Gp(x, y, z)‖ = o‖(x, y, z)‖2 consists of the
higher order terms, see explanations below.

(iii) The resonant coefficient vanishes, i.e.,λ(0) = 0.

Our explanation now concerns condition (i) which says thatX0 possesses a homoclinic orbitΓ = {Γ (t) |
t ∈ R} to the equilibrium point. This orbit is contained inWu ∩ Ws . The second degeneracy condition is
non transversallity condition mentioned above and is defined as follows. We say thatΓ is an ‘inclination-flip’
homoclinic orbit ifWu,s

loc is tangent toWs alongΓ . Indeed, this configuration occurs when two smooth functio

ε,µ :D → R
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vanish, i.e.,Xp possesses an inclination-flip homoclinic orbit if and only ifε(p) = 0 = µ(p). Heuristically, these
functions are defined as follows. Take a cross sectionΣ transverse toWu

loc. In Σ , ε stands for the distance betwe
Wu

loc andWs . When this distance vanishes,µ represents the angle between the tangent space of theWs ∩Σ and that
of W

u,s
loc ∩ Σ . Condition (ii) concerns the eigenvalues. We writeν(p) = α(p) − 2β(p). We assume thatν(0) = 0

i.e., the unperturbed system admits a resonance between the negative eigenvalues. This further implie
normal form ofXp at the origin takes the form (1). Observe thatz2 ∂

∂y
is a resonant term forY0. This explains

why we can expand the 2-jet of the family, forp ∼ (0,0,0,0) as above. Note that condition (iii) says that t
corresponding coefficient vanishes.

Before stating the main result of this paper, we introduce the following notations. Letγ = (γ0, γ1) ∈ R
2, δ > 0.

The cubic Hénon map is defined as follows

H±
γ,δ :R2 → R

2, (u, v) �→ (γ0 + γ1u ± u3 + δv,−δu),

with δ2 as Jacobian. We say that a family of mapHγ,δ :R2 → R
2 is acubic Hénon-like familyif the family is close

toH±
γ,0 in theC3 topology of the uniform convergence on compact set and more precisely if there existr > 0 such

that
∥∥Hγ,δ −H±

γ,δ

∥∥
C3 = O(δr ).

In what follows,S is a subsection transverse toΓ . The local stable manifoldWs
loc split S into two connected

components andS+ is that where the Poincaré return mapPp associated toXp is well defined.

Theorem 1.1. Let {Xp,p ∈ D} be a family of vector fields that satisfies the above four properties. We mor
assume that1/3< β(0) < 1/2 and that the map

ϕ :D :→ R
4, p �→ (

ε(p),µ(p),λ(p), ν(p)
)

is a diffeomorphism near0. Let S be a section transverse toΓ and Pp :S+ → S be the Poincaré return ma
associated toXp. Then there exists a blow-up

ψ :R2 × R+ × R → R
4, (γ, δ, ν) �→ (

ε(γ, δ, ν),µ(γ, δ, ν), λ(γ, δ, ν), ν
)

such that,ε(γ,0, ν) ≡ λ(γ,0, ν) ≡ µ(γ,0, ν) ≡ 0. Furthermore,ψ is a diffeomorphism onto its image and for a
ν, the family of mapsPφ−1◦ψ(γ,δ,ν) is equal to a cubic Hénon like map after a singular change of coordinate
the sectionS.

A direct consequence of Theorem 1.1 is that the Poincaré return map is close to a bimodal map. F
a strange attractor is present for a set of parameters with positive Lebesgue measure. Recall that a strang

Fig. 1. The attractor for the value(γ0, γ1) = (0.25,−2.478), with δ = 0.508.

Fig. 1. L’attracteur pour les valeurs de(γ0, γ1) = (0,25,−2,478), δ = 0,508.
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it possesses a dense orbit, a positive Lyapunov exponent and is non-hyperbolic. Moreover, this attractor is c
in the closure of the unstable manifold of a fixed point of saddle type. Furthermore forδ arbitrarily close to 0, one
can construct examples withγ0 ∼ 0, γ1 ∼ −2 such that the mapH+

γ,δ possesses an attractor that with entropy cl
to log3, which is a topological obstruction for this attractor to be conjugated with the classical Hénon a
(Fig. 1). This Poincaré return map can be realized in the familyXp. Note that Holmes [8] suggested the cub
Hénon map family as a model for the Poincaré return map associated with the Duffing’s equation [9].

2. Sketch of the proof

The proof of Theorem 1.1 is achieved by the following procedure. We fix a subsectionS+ ⊂ S such that the
Poincaré return mapPp :S+ → S is well defined. This latter map is the composition of two maps: the Dulac
which is the transition betweenS+ and an intermediate sectionΣ transverse to the local unstable manifold a
a regular map which is the transition map fromΣ to S. We use results in [1,2,17] to compute the asymptotic
the Dulac map and then those of the Poincaré return map. This latter, is singular at the intersection with th
manifold. We then show that for values of the parameterp in Φ−1 ◦ Ψ (γ, δ, ν), for all values ofν the Poincaré
return mapPψ(γ,δ,ν) is close to the familyHγ,δ , after a singular rescaling in the(u, v) coordinates. The technique
developed to construct the blow up generalize those in [15,16].
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