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Abstract

The complex quadratic formz′Pz, wherez is a fixed vector inCn andz′ is its transpose, andP is any permutation matrix
is shown to be a convex combination of the quadratic formsz′Pσ z, wherePσ denotes the symmetric permutation matrices.
deduce that the optimal probability density associated to the chiral index of a sample from a bivariate distribution is sym
This result is used to locate the upper bound of the chiral index of any bivariate distribution in the interval[1− 1/π,1− 1/2π ].
To cite this article: D. Coppersmith, M. Petitjean, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

À propos de la densité optimale associée à l’indice chiral d’un échantillon d’une distribution bivariée. Nous montrons
que la forme quadratique complexez′Pz, où z est un vecteur donné dansCn et z′ est son transposé, etP est une matrice
de permutation, est une combinaison convexe des formes quadratiquesz′Pσ z, où lesPσ sont des matrices de permutati
symétriques. On en déduit que la densité de probabilité optimale associée à l’indice chiral d’un échantillon d’une dis
bivariée est symétrique. Ce résultat est utilisé pour localiser la borne supérieure de l’indice chiral d’une distribution
quelconque dans l’intervalle[1− 1/π,1− 1/2π ]. Pour citer cet article : D. Coppersmith, M. Petitjean, C. R. Acad. Sci. Paris,
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Version française abrégée

L’indice chiral χ d’une distribution multivariée est défini à partir de la distance de Wasserstein [5] entre
distribution et son image par tranformation orthogonale de déterminant−1, cette distance étant minimisée po
toutes les rotations et translations de l’image, et normalisée à l’inertie [2].

L’indice chiral d’un échantillon de taillen d’une distribution bivariée d’inertieT , s’exprime dans le plan com
plexe à l’aide de la forme quadratique complexez′Pz, dans laquellez est un vecteur complexe àn composantes
z′ est son transposé non conjugué,T = ‖z‖2/n, etP est une matrice de permutation égale àn fois la matrice des
probabilités conjointes associée à la distance de Wasserstein :

χ = 1−
[
max{P } (z′Pz)

]/
nT .

Dans une première partie, nous montrons qu’il existe toujours une permutation optimale symétrique.
Dans une seconde partie, nous utilisons ce résultat pour localiser la borne supérieure deχ dans le plan complexe

Nous exhibons une famille de distributions dont l’indice chiral est arbitrairement proche de 1− 1/π , puis nous
obtenons un majorant égal à 1− 1/2π .

L’extension aux distributions bivariées quelconques (d’inertie finie et non nulle) est faite via un théorè
convergence de la littérature.

1. Introduction

The chiral indexχ of a finite varianced-variate probability distributionP is the Wasserstein distance [5] b
tween the distributionP and its inverted image�P , minimized for all rotations and translations of�P , and normalized
to the inertia ofP [2]. It takes values over[0,1]. It is a skewness measure offering various applications in c
puter sciences [3]. In the case of a sample of sizen, the optimal joint density between andP and �P is known to
exist [5]. The matrix associated to this optimal density is shown to be(1/n) times a permutation matrix [2,4]. I
the univariate case, this permutation matrix is symmetric [1]. We extend the result in this Note to the bivaria
the optimal joint density is symmetric. The upper bound of the chiral index of ad-variate distribution is unknown
except in the univariate case, for which it is 1/2 [2]. In the bivariate case, the symmetry of the optimal joint den
of a sample is used to locate the upper bound in[1− 1/π,1− 1/2π].

2. Symmetry of the optimal permutation

We first need to establish two theorems in the complex plane. We fix a complex vectorz = (z1, z2, . . . , zn) ∈Cn.
Given a permutationσ on n indices{1,2, . . . , n}, define the quadratic formz′Pσ z = ∑n

j=1 zj zσ(j), wherePσ is
the permutation matrix associated toσ .

Theorem 2.1. For any permutationτ , the complex numberz′Pτ z is in the convex hull of the set{z′Pσ z: Pσ = P ′
σ }.

�( ) denoting the real part of a complex number, this following lemma will be crucial:

Lemma 2.2. If τ is ann-cycle, then there is a symmetric permutationσ satisfying�(z′Pσ z) � �(z′Pτ z).

Proof of Lemma 2.2. Let τ = (1,2,3, . . . , n). Whenn ∈ {1,2} the result is immediate:τ itself is a symmetric
permutation. Whenn is even, define two permutations (as products ofn

2 disjoint 2-cycles):α = (1,2)(3,4) · · · (n−
1, n), andβ = (2,3)(4,5) · · · (n,1), and compute thatz′Pτ z = [z′Pαz + z′Pβz]/2. Soz′Pτ z is a convex combina
tion of z′P z andz′P z, whence min{�(z′P z),�(z′P z)} � �(z′P z).
α β α β τ
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We are left with the case wheren is odd,n � 3. Consider the following 2n permutations:

αj = (j)(j + 1, j + 2)(j + 3, j + 4) · · · (j − 2, j − 1)

βj = (j − 1, j + 1)(j)(j + 2, j + 3)(j + 4, j + 5) · · · (j − 3, j − 2)

}
1� j � n.

We compute:z′Pαj
z+ z′Pαj+1z− 2z′Pτ z = z2

j + z2
j+1 − 2zj zj+1 = (zj+1 − zj )

2, where we are considering th
indices modulon, so that ifj = n thenzj+1 = z1.

z′Pαj
z + z′Pβj

z − 2z′Pτ z = 2z2
j + 2zj−1zj+1 − 2zj−1zj − 2zj zj+1 = −2(zj+1 − zj )(zj − zj−1).

Now suppose the lemma is false, so that for allj , �(z′Pαj
z) > �(z′Pτ z) and�(z′Pβj

z) > �(z′Pτ z). Then for
all j , �[(zj+1 − zj )

2] > 0 and�[−2(zj+1 − zj )(zj − zj−1)] > 0.
Fix j . Defineb = zj+1 − zj , c = zj − zj−1. We have just seen that�(b2) > 0 and�(c2) > 0 and�(bc) < 0 (so

that�(b2) �= 0 and�(c2) �= 0 and�(bc) �= 0). Observe also that(�(b)c − �(c)b) is pure imaginary, so its squa
is real and nonpositive:�(b)2c2 + �(c)2b2 − 2�(b)�(c)bc � 0. Taking the real parts of all terms and rearrangi
2�(b)�(c)�(bc) � �(b)2�(c2)+�(c)2�(b2) > 0, and from�(bc) < 0 we conclude�(b)�(c) < 0. So the sign of
�(b) = �(zj+1−zj ) and the sign of�(c) = �(zj −zj−1) are opposite. Asj cycles around 1,2, . . . , n,1, the signs
of �(zj+1 − zj ) alternate. Butn is odd, so this alternation is impossible. The contradiction proves Lemma 2.2�
Lemma 2.3. If τ is ann-cycle, thenz′Pτ z is in the convex hull of the set{z′Pσ z: Pσ = P ′

σ }.

Proof of Lemma 2.3. Suppose the conclusion is false. Then there is a line� throughz′Pτ z in the complex plane
with all {z′Pσ z: σ = σ−1} lying on one side of the line. If� has directionθ , we have�[z′Pσ zei(π/2−θ)] >

�[z′Pτ zei(π/2−θ)] for all σ with σ = σ−1. Now setw = zei(π/2−θ)/2 so thatw′Pτw = ei(π/2−θ)z′Pτ z, and ap-
ply Lemma 2.2. �
Proof of Theorem 2.1. Express an arbitrary permutationτ as a product of disjoint cyclesτj ; apply the proof of
Lemma 2.3 to each cycle.

Then Theorem 2.4 is deduced immediately from Theorem 2.1:

Theorem 2.4. The modulus ofz′Pz is maximized by a symmetric permutation matrixPσ .

It is pointed out that non symmetric permutations may be optimal (e.g. whenz has several identical elements

3. Application to the chiral index

As mentioned in the introduction, the chiral indexχ is a parameter measuring the degree of asymmetry
multivariate distributionP having a finite and non null inertiaT . It takes values in the interval[0,1]. It is null if
and only if the distribution is identical to any of its images�P generated by the composition of a translation and
orthogonal transformation with determinant−1.

Here we need to locate the upper bound ofχ for bivariate distributions, and provide informations on the extre
chirality distributions. The results hereafter are obtained via complex analysis techniques applied to sam
bivariate distributions, rather than via probability calculations. The extension to parent distributions will be
with a published convergence theorem.

We setz = x + iy andX = [x|y], x andy being fixed vectors inRd , so that|z′Pz| = λ1 − λ2, whereλ1 andλ2

are the eigenvalues ofX′(P+P ′
)X.
2
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The chiral indexχ is computed at null expectation from Eqs. (6) and (7) in [1]. For a sample of a biva
distributionP with inertiaT = ‖z‖2/n and‖z‖2 = x′x + y′y, it is known [1] to be:

χ = 1−
[
max{P } (λ1 − λ2)

]/
nT . (1)

The matrix associated to the joint density betweenP and �P is [P/n], and the minimized Wasserstein distan
betweenP and�P is T χ [2].

Thus Theorem 3.1 is deduced immediately from Theorem 2.4:

Theorem 3.1. The optimal joint density matrix[P/n] of the finite discrete bivariate distributionsP and �P is
symmetric.

We consider now the more general situation where then points are partitioned into groups of colors [1,2,
Permutations involving cycles over two groups are no more considered, and the optimal permutation is ta
a subset of then! permutations. Obviously, Theorems 2.1 and 2.4 stand again, and the optimal joint density
is still symmetric. Colors are not further considered in this Note.

4. Localization of the upper bound of the chiral index: part 1

We exhibit here a family of centered sets for which the ratio max{P } |z′Pz|/‖z‖2 is arbitrarily close to 1/π .
‘Centering’ means working at null expectation. It means here that1′z = 0, where1 is a vector inCn each of whose
elements is 1. It is also recalled that the ratio is insensitive to an arbitrary planar rotation (phase).

Lemma 4.1. The upper bound of the chiral index of a bivariate sample cannot be smaller than1− 1/π .

Proof of Lemma 4.1. Fix ε > 0. Choose an even integerm > 1/ε. Let ω = ei2π/(2m) be a complex root of unity
so thatω2m = 1. Select an integerr > m4/ε2 and an even integerk > rm−1/ε. The complex vectorz hasn =
(1 + r + r2 + · · · + rm−1 + 2k) elements as follows. There arem + 3 blocks labelledj = 0, . . . ,m + 2, each
consisting of identical elements. Forj < m, block j hasrj identical elements with valueωj/rj/2. Let S denote
the sum of these elements:S = ∑j=m−1

j=0 ωj rj/2. Block m containsk identical elements with value−S/k; block
m+ 1 containsk/2 elements with valueiS/k; and blockm+ 2 containsk/2 elements with value−iS/k. The sum
of elements ofz is zero: blockm cancels the firstm blocks, and blocksm + 1, m + 2 cancel each other. Also, th
sum of squares of elements ofz is zero: the squares of elements in the firstm blocks add to

∑m−1
j=0 ω2j = 0, while

blocksm + 1 andm + 2 cancel blockm. One can computex′x = y′y = m/2+ O(ε) andx′y = 0.
We know from Theorem 2.4 that the optimal permutationP pairs the elements ofz, some being paired with

themselves whenP contains 1-cycles. LetBj be the number of elements paired within the blockj . We setβj =
Bj/rj , so that 0� βj � 1 for j = 0, . . . ,m − 1. The contribution of these elements toz′Pz is βjω

2j .
One can see that the contribution toz′Pz of the elements paired between two different blocksj1 and j2 is

O(1/r(1/2)|j1−j2|) = O(ε/m2) whenj1 < m andj2 < m, so that them2 − m off-diagonal blocks contribute a tota
of O(ε) to z′Pz. The contribution of the elements paired between the blocksj < m and blocksm,m + 1,m + 2
is O(rm−1( 1√

rm−1
)
|S|
k

) = O(ε). The contribution of the elements paired within the last three blocks is O(k(
|S|
k

)2) =
O(ε). All these contributions sum to at most O(ε), except for the diagonal termsj1 = j2 < m.

We look for limm→∞ max{P } |z′Pz|/‖z‖2. Whenm is arbitrarily large, we look for them valuesβj maximizing:

|∑j=m−1
j=0 βjω

2j + O(ε)|/(m + O(ε)).

The complex numberγ = ∑j=m−1
j=0 βjω

2j is the sum ofm terms having all modulus in the interval[0,1].
Neglecting the term O(ε), we can see that only the terms offering a difference of phaseφ such that cos(φ) �
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βj/2|γ | will contribute to the modulus ofγ . Since|γ | tends to infinity whenm tends to infinity, only the term
having a difference of phase within[−π/2,+π/2] with γ will contribute to the modulus ofγ .

For these latter we setβj = 1, and we setβj = 0 elsewhere. Working with a free arbitrary phase, we have:

γ = 1+ ω2 + ω4 + · · · + ω2(m−1)/2 = 1− ωm

1− ω2
= 2

(−iω)(2 sin(2π/2m))
.

Its modulus is|γ | = 1
sin(π/m)

= m
π

+ O( 1
m

) = m
π

+ O(ε). Therefore:

lim
m→∞

{
max{P } |z′Pz|/‖z‖2

}
= 1

π
.

Our family of setsz has a chiral index arbitrarily close to 1− 1/π , thus Lemma 4.1 is proved.

5. Localization of the upper bound of the chiral index: part 2

We first show that no set can have the ratio max{P } |z′Pz|/‖z‖2 smaller than 1/π under the additional conditio
that at least half of then elementszj are null. The centering condition is not set here.

Lemma 5.1. For any complex vector having at least half of its elements null, we have the following ineq:
[max{P } |z′Pz|/‖z‖2] � 1/π .

Proof of Lemma 5.1. We consider an arbitrary phaseθ and its associated permutationPθ such thatzj is paired
with itself when�(z2

j eiθ ) > 0 andzj is paired with a null element when�(z2
j eiθ ) � 0. Settingz2

j = rj eiφj , we

have eiθ z′Pθz = ∑
rj ei(θ+φj ), and since|z′Pθz| � |�(eiθ z′Pθz)|, we have:

|z′Pθz|
‖z‖2

�
∑

rj max{0,cos(θ + φj )}∑
rj

.

The numerator of the right member of the inequality above is a continuous function ofθ maximized for some
unknown value ofθ , whereθ/2 is the phase of the free rotation. Although the maximum is difficult to loca
cannot be smaller than the mean value of the function. This mean value is:

1

2π

θ=2π∫
θ=0

∑
rj max

{
0,cos(θ + φj )

}
dθ.

Permuting the two summation operators, we are left with a finite sum of integrals, each of them being equarj .
The mean value of the function is 2

∑
rj /2π , thus proving Lemma 5.1.�

The condition ‘at least half of the elements are null’ is asymptotically satisfied for the sets considered
previous section. Now we remove this condition, and we set instead the centering condition1′z = 0.

Lemma 5.2. The chiral index of any bivariate sample cannot be greater than1− 1/2π .

Proof of Lemma 5.2. We know that there existsθ such that:
∑

rj max{0,cos(θ + φj )} � (1/π)
∑

rj .
Let k be the number of elementszj such that�(z2

j ) < 0. We definezk as thek-dimensional vector such tha

�(z2
j ) < 0, andzn−k as the (n − k)-dimensional vector such that�(z2

j ) � 0, such that1′zk + 1′zn−k = 0. We set

the arbitrary phase such thatθ = 0, without loss of generality:
∑

max{0,�(z2)} � (1/π)
∑ |z |2.
j j
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Then we build the matrix[nW+], such that[W+] is a joint density matrix and[nW+] is a doubly stochasti
matrix, as follows:

(n + k)[nW+] = 1 · 1′ +
( −1 · 1′ + nI 0

0 1 · 1′
)

in which I is the identity matrix of sizen − k and the vectors1 have the appropriate size (eitherk, or n − k, or n).
Building z′ = [z′

n−k|z′
k], we have:z′[nW+]z = n

n+k
(z′

n−kzn−k), and since the real part cannot exceed the modu

we get|z′[nW+]z| � n
n+k

( 1
π
)
∑ |zj |2.

The permutation matrices are the extreme points of the closed bounded convex set of bistochastic
Then, max{P } |z′Pz| � |z′[nW+]z| and:

max{P } |z′Pz| � n

n + k

(
1

π

)
‖z‖2, (2)

and sincek � n: max{P } |z′Pz|/‖z‖2 � 1/2π , which proves Lemma 5.2.
A slight improvement is obtained when the conditionz′z = 0 is added. We build the doubly stochastic mat

[nW−]:
(
n + (n − k)

)[nW−] = 1 · 1′ +
(

1 · 1′ 0
0 −1 · 1′ + nI

)
.

Then:z′[nW−]z = n
n+(n−k)

(z′
kzk). Sincez′

kzk = −z′
n−kzn−k , we are led to the same inequalities as above, ex

that the factorn/(n + k) is now replaced byn/(n + (n − k)):

max{P } |z′Pz| � n

n + (n − k)

(
1

π

)
‖z‖2. (3)

Depending which ofk or (n − k) is the smaller, the largest of the ratiosn/(n + k) andn/(n + (n − k)) cannot
be smaller than 2/3, and thus: max{P } |z′Pz|/‖z‖2 � 2/3π , corresponding to a chiral index upper bounded
1− 2/3π .

The conditionz′z = 0, i.e.x′x = y′y andx′y = 0, means that the variance matrix of the centered set[x|y] is
proportional to the identity matrix. This condition is asymptotically satisfied by the sets described in the p
section.

From Lemmas 4.1 and 5.2, the upper bound of the chiral index of any bivariate sample is lying somew
the interval[1− 1/π,1− 1/2π]. From the convergence theorem in section IV in [2], we deduce Theorem 5.

Theorem 5.3. The upper bound of the chiral index of a bivariate distribution lies in the interval[1−1/π,1−1/2π].

The family of bivariate distributions described in Section 4 are conjectured to be asymptotically of m
chirality. In higher dimensions, finding the upper bound of the chiral index and exhibiting extreme chirality
butions are open problems.
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