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Abstract

The aim of this Note is to present an optimal stepwise method for estimating an integral of a time series from obse
at appropriately designed sampling points. Optimal linear estimators along with sampling points are constructed via a
procedure. At each stage, one term is added to the existing estimator with the addition of one new sample, and previou
tions and calculations are preserved. The stepwise method is also considered when simple linear nonparametric est
used. Asymptotically, an optimal one-step ahead sampling point is derived by maximizing an objective function that
on the singularity of the process at the previous points.To cite this article: K. Benhenni, Y. Su, C. R. Acad. Sci. Paris, Ser. I
340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Estimation de moyennes aléatoires par une procédure d’échantillonnage pas à pas. Dans cette Note, on considè
l’estimation de l’intégrale d’un processus stochastique à partir d’observations engendrées par une procédure optimal
tillonnage pas à pas. À travers cette procédure on construit des estimateurs linéaires optimaux ainsi que les points d’ob
À chaque étape de la procédure, l’estimateur actuel est modifié par l’addition d’un terme engendré par le nouveau point
ainsi de préserver les observations et les calculs précédents. On applique aussi cette procédure d’échantillonnage pou
des estimateurs linéaires nonparamétriques. On montre que le point d’échantillonnage optimal asymptotique de l’étap
de la procédure est celui qui maximise une fonction objective qui dépend de la singularité du processus à travers s
d’autocovariance aux points précédents.Pour citer cet article : K. Benhenni, Y. Su, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The problem of interest is to estimate an integral of a time series from observations at a finite numbe
propriately designed sampling points. The performance of an estimator is measured by the mean squa

E-mail addresses:Karim.Benhenni@upmf-grenoble.fr (K. Benhenni), yis780f@smsu.edu (Y. Su).
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.03.003
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Optimal and simple linear estimators are considered and sampling points are so chosen to minimize t
squared error. In view of the literature, deterministic sampling schemes can be classified into single-stage
and stepwise methods. Single-stage methods find a fixed number of sampling points simultaneously while
methods select one sampling point at a time. Stepwise procedures are desirable in practice since previou
tions and calculations are preserved. At each step it is only necessary to add one term to the existing es
one wishes to use one additional sample.

Asymptotically optimal single-stage sampling designs are considered by many authors for different st
problems. In particular, the estimation of regression coefficients is studied in Sacks and Ylvisaker [5]. T
mation of integrals of time series is studied in Benhenni and Cambanis [2] for those with zero or highe
quadratic mean derivatives and in Stein [6] and Pitt, Robeva and Wang [4], Benhenni [1], Istas and Lared
those with derivatives up to an arbitrary order (not necessarily an integer).

The aim of this Note is to introduce an optimal stepwise method for the estimation of an integral of
series. The problem of estimating an integral of time series by use of both an optimal linear estimato
simple linear estimator is introduced in Section 2. Optimal linear estimators require the precise knowle
the covariance function while simple linear estimators depend only on observations and corresponding s
points. In Section 3, an optimal stepwise method for estimating an integral of a time series is presented
proposed stepwise approach, optimal linear estimators along with sampling points are determined step
minimize the mean squared error. For a time series with no quadratic mean derivative, such as time se
Wiener, Gauss–Markov covariance, it turns out that asymptotically, an optimal one-step ahead sampling
one of the midpoints of intervals, determined by the currently existing sampling points. In Section 4, we
that asymptotically, the rule of determining optimal stepwise sampling points for simple linear nonpara
estimators is essentially similar to that for optimal linear estimators.

2. Estimation of an integral of time series

Let X(t), t ∈ [0,1] be a second order time series with zero meanEX(t) = 0 and covariance functio
EX(t)X(s) = R(s, t). Consider the integralI (X) = ∫ 1

0 X(t)dt of X over the bounded interval[0,1]. Define

a functionf on [0,1] by f (t) = EX(t)I (X) = ∫ 1
0 R(s, t)ds, t ∈ [0,1] and denote its integration on[0,1] by

σ 2 = ∫ 1
0 f (t)dt = ∫ 1

0

∫ 1
0 R(s, t)ds dt = EI2(X). The functionf (t) plays an essential role in our discussion a

the quantityσ 2 represents the total variation of the integralI (X).
Here, we want to estimate the integralI (X) from observations ofX at n sample pointsTn = {ti}ni=1 ⊂ [0,1]

using a linear estimatorLn(X) = ∑n
i=1 ciX(ti) = C′

nXn , whereX′
n = (X(t1), . . . ,X(tn)) are observations ofX at

Tn andC′
n = (c1, . . . , cn) are coefficients to be selected. The mean squared error (MSE) of the estimatorLn(X) is

MSE(Cn/Tn) = E
(
Ln(X) − I (X)

)2 = σ 2 − 2C′
nfn + C′

nRnCn,

wheref ′
n = (f (t1), . . . , f (tn)) are the values off atTn andRn = (R(ti , tj ))n×n is the variance–covariance matr

of Xn. The inverse ofRn is assumed to exist for everyn. It is desired to choose the coefficientsCn and the sampling
pointsTn in such a way that the resulting MSE is as close to zero as possible.

For a fixed sampling designTn, optimal coefficientŝCn minimizeMSE(Cn/Tn) over all possible coefficients
and arêC′

n = f ′
nR

−1
n . The optimal linear estimator and its MSE are

L̂n(X) = f ′
nR

−1
n Xn, MSE(Ĉn/Tn) = σ 2 − f ′

nR
−1
n fn,

respectively. Clearly, for̂Ln(X), a sampling designTn that maximizesf ′
nR

−1
n fn minimizesMSE(Ĉn, Tn).

The optimal linear estimator requires the complete knowledge of covarianceR. To bypass this constraint, w
construct a simple linear estimator that depends only on the observations at the sampling points. Withou
generality, assume 0� t < · · · < t � 1. By applying the trapezoidal rule for integral approximation in eac
1 n
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the intervals(ti , ti+1), i = 1, . . . , n − 1 and using the rectangular rule in the two end intervals[0, t1) and(tn,1],
a simple linear estimator is obtained as follows

L̄n(X) = t1X(t1) +
n−1∑
i=1

(ti+1 − ti )
[
X(ti) + X(ti+1)

]
/2+ (1− tn)X(tn).

The simple linear estimator̄Ln(X) is of the form:L̄n(X) = C′
nXn whereC′

n = (c̄1, . . . , c̄n) with c̄1 = (t1 + t2)/2,

c̄i = (ti+1 − ti−1)/2, i = 2, . . . , n − 1 andc̄n = (2− tn−1 − tn)/2.

3. Optimal stepwise sampling designs for optimal linear estimators

The stepwise sampling method selects one sampling point at a time. The observation at the(n + 1)th sampling
point explains the largest portion of variation ofI (X) unexplained by observations at the precedingn sampling
points. This process continues until no significant improvement on the explained variation from new points

In general, if the firstn sampling pointsto1 , . . . , ton have been selected, the(n + 1)th sampling pointton+1 is
so chosen that the marginal increase of variation due to the observationX(ton+1) is maximized among allX(t),
t /∈ {toi }ni=1. The marginal increase of variation due to the observationX(tn+1) of X, given thatX(to1), . . . ,X(ton)

are already obtained, is

c2(tn+1 | T o
n

) = [
f (tn+1) − f ′

nR
−1
n rn(tn+1)

]2/[
R(tn+1, tn+1) − r ′

n(tn+1)R
−1
n rn(tn+1)

]
,

wheref ′
n = (f (to1), . . . , f (ton)), Rn = (R(toi , toj ))n×n andr ′

n(tn+1) = (R(t1, tn+1), . . . ,R(tn, tn+1)). Thenton+1 is a

maximizer ofc2(tn+1 | T o
n ), namely,

c2(ton+1 | T o
n

) = sup
tn+1/∈T o

n

c2(tn+1 | T o
n

)
.

The corresponding mean squared error ofL̂(X | T o
n+1) is

MSE
(
Ĉn | T o

n+1

) = σ 2 − EL̂2(X | T o
n

) = σ 2 − [
c2(to1) + c2(to2 | to1

) + · · · + c2(ton+1 | T o
n

)]
.

Consider the class of time series with no quadratic mean derivative. The covarianceR(u, v), however, satisfie
the following assumption:

Assumption 1. R(u, v) is assumed to have continuous mixed partial derivatives up to order two off the dia
u �= v in the unit square, and continuous limits for its first order derivative at the diagonalu = v from above
and below, denoted byR(0,1)(u,u±) = limv→u±0 ∂R(u, v)/∂v. The jump function ofR(0,1) along the diagonal
α(u) = R(0,1)(u,u−)−R(0,1)(u,u+), is assumed to be continuous and not identical to zero. In addition, we re
R(0,2)(u, ·) to belong to the reproducing kernel Hilbert space spanned byR for every 0� u � 1.

For the Wiener covarianceR(s, t) = min(s, t), the jump functionα(t) ≡ 1 andR(0,2)(t, ·) ≡ 0. For the Gauss–
Markov covarianceR(s, t) = exp (− | s − t |), α(t) ≡ 2 andR(0,2)(t, ·) = R(t, ·). A class of covariance function
with nonconstant jump functions is easy to give.

Specifically, suppose thatTn = {ti}ni=1 in [0,1] is a currently operating set of sampling points. Denote
orderedti by 0� s1 < · · · < sn � 1. The precise stepwise method findston+1 by maximizing the exactc2(t | Tn)

in [0,1]. Here we find a(n + 1)th sampling point by maximizing asymptotic expressions ofc2(t | Tn) as stated in
the following result.

Theorem 3.1. Consider the problem of estimatingI (X) by the optimal linear estimator̂L(X | Tn+1), wheretn+1
is a sampling point at one-step ahead. Fort, u ∈ [0,1], t �= u, let

c2(t | u) = [
f (t) − R(t, u)f (u)/R(u,u)

]2/[
R(t, t) − R2(t, u)/R(u,u)

]
.
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Denote the orderedti by si , then under Assumption1, an asymptotic optimal sampling point at one-step ahe
denoted bytan+1, is a maximizer ofc2(t | s1) in t ∈ [0, s1), or one of the midpoints: (sk + sk+1)/2, k = 1, . . . , n− 1,
or a maximizer ofc2(t | sn) in (sn,1]; tan+1 corresponds to the largest value among the local maximum ofc2(t | s1)

in [0, s1), α(sk)(sk+1 − sk)
3/16, k = 1, . . . , n − 1 and the local maximum ofc2(t | sn) in (sn,1]. In addition

lim
n→∞ c2(tan+1 | Tn)/c

2(ton+1 | Tn) = 1.

Theorem 3.1 says that asymptotically, an optimal sampling pointtan+1 at next step is one of the midpoints
intervals determined by{ti}ni=1 and moreovertan+1 has the same performance as an exact optimal pointton+1.

4. Optimal stepwise sampling designs for simple nonparametric linear estimators

Given a set of previously determined sampling pointsTn = {ti}ni=1, we try to find the next optimal pointtn+1

when the simple linear estimatorL̄n(X) is used for estimating the integralI (X).
Denote the ordered sample pointsTn by 0 � s1 < · · · < sn � 1 and writedi = si+1 − si , i = 0, . . . , n with

s0 = 0, sn+1 = 1. The simple nonparametric linear estimatorL̄(X | Tn+1) is constructed stepwisely according
whethertn+1 ∈ [0, s1), (sk, sk+1), k = 1, . . . , n − 1, or (sn,1].

The following result gives asymptotically the optimal stepwise sampling points for the class of time serie
no quadratic mean derivatives when simple linear estimators are used. The corresponding asymptotic MS
obtained.

Theorem 4.1. Consider the problem of estimatingI (X) by the simple linear estimator̄L(X | Tn+1). Then under
Assumption1, an asymptotic optimal one-step forward sampling pointtan+1 is one of the points: s1/3 in [0, s1),
(sk + sk+1)/2 in (sk, sk+1), k = 1, . . . , n − 1 and (sn + 2)/3 in (sn,1]. It corresponds to the largest value amo
(2s1/3)3α(s1) ≡ q0, (sk+1 − sk)

3α(sk)/16≡ qk, k = 1, . . . , n − 1, and [2(1 − sn)/3]3α(sn) ≡ qn. Moreover, the
corresponding MSE is

MSE(Cn+1 | Tn, t
a
n+1) ∼ s3

1α(s1)/3+
n−1∑
i=1

α(si)d
3
i /12+ (1− sn)

3α(sn)/3− max
0�k�n

qk.
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