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Abstract

In this Note we give a counter example to a conjecture of Malle which predicts the asymptotic behavior of the c
functions for field extensions with given Galois group and bounded discriminant.To cite this article: J. Klüners, C. R. Acad.
Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un contre-exemple à la conjecture de Malle sur le nombre de corps de discriminant borné.Dans cette Note, nou
donnons un contre-exemple à une conjecture de Malle, qui prédit le comportement asymptotique du nombre de corps
galoisienne fixée et discriminant borné.Pour citer cet article : J. Klüners, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let G � Sn be a finite transitive permutation group andk be a number field. We say that a finite extensionK/k

has Galois groupG if the normal closurêK of K/k has Galois group isomorphic toG andK is the fixed field in
K̂ under a point stabilizer ofG. By abuse of notation we will write Gal(K/k) = G in this situation. We let

Z(k,G;x) := #
{
K/k: Gal(K/k) = G, Nk/Q(dK/k) � x

}

be the number of field extensions ofk (inside a fixed algebraic closure�Q) of relative degreen with Galois group
permutation isomorphic toG (as explained above) and norm of the discriminantdK/k bounded above byx. It is
well known that the number of extensions ofk with bounded norm of the discriminant is finite, henceZ(k,G;x)

is finite for allG, k andx � 1.

E-mail address:klueners@mathematik.uni-kassel.de (J. Klüners).
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.02.010



412 J. Klüners / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 411–414

.

t

s, we
Malle [7,8] has given a precise conjecture about the asymptotic behavior of the functionZ(k,G;x) for x → ∞.
In order to state it, we introduce some group theoretic invariants of permutation groups.

Definition 1.1.Let 1 �= G � Sn be a transitive subgroup acting onΩ = {1, . . . , n}.

(i) For g ∈ G we define the index ind(g) := n − the number of orbits ofg onΩ.

(ii) ind(G) := min{ind(g): 1 �= g ∈ G}.
(iii) a(G) := ind(G)−1.

Since all elements in a conjugacy classC of G have the same index we can define ind(C) in a canonical way
The absolute Galois group ofk acts on the set of conjugacy classes ofG via the action on the�Q-characters ofG.
The orbits under this action are calledk-conjugacy classes.

Definition 1.2.For a number fieldk and a transitive subgroup 1�= G � Sn we define:

b(k,G) := #
{
C: C k-conjugacy class of minimal index ind(G)

}
.

Now we can state the conjecture of Malle [8], wheref (x) ∼ g(x) is a notation for limx→∞ f (x)/g(x) = 1.

Conjecture 1.3(Malle). For all number fieldsk and all transitive permutation groups1 �= G there exists a constan
c(k,G) > 0 such that

Z(k,G;x) ∼ c(k,G)xa(G) log(x)b(k,G)−1,

wherea(G) andb(k,G) are given as above.

This conjecture is proved for Abelian groups [9]. For all number fieldsk and all nilpotent groupsG it is shown
in [6] that

lim sup
x→∞

logZ(k,G;x)

logx
� a(G).

If we furthermore assume thatG is in its regular representation, i.e., we count normal nilpotent number field
get:

lim
x→∞

logZ(k,G;x)

logx
= a(G).

For more results see also the survey articles [1,2]. In the following we use the notationf (x) = O(g(x)), if
lim supx→∞ f (x)/g(x) < ∞. Furthermore, we writef (x) = θ(g(x)), if f (x) = O(g(x)) andg(x) = O(f (x)).

2. The counter example

We present a counter example to Conjecture 1.3 fork = Q and the wreath productG := C3 �C2 = C2
3 �C2 � S6

of order 18, whereCn is the cyclic group of ordern.

Theorem 2.1.Conjecture1.3does not hold fork = Q andG = C3 � C2.

Proof. In the following we count all field towersL/K/Q such that Gal(L/K) = C3 and Gal(K/Q) = C2. There-
fore the Galois group ofL/Q is one of the groupsC6, S3(6),G � S6, whereS3(6) denotes the groupS3 in its
degree 6 representation. SinceC6 is Abelian we get from [9] that

Z(Q,C ;x) ∼ c(C )x1/3. (1)
6 6
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From the Davenport–Heilbronn theorem [3] we know that

Z
(
Q, S3(3);x) ∼ c

(
S3(3)

)
x.

Using the fact that the discriminant of the splitting field of anS3-extension is at least the square of the discrimin
of theS3-extension, we easily get that

Z
(
Q, S3(6);x) = O(x1/2).

Since extensions with Galois groupS3(6) are normal we can use a result in [4, Proposition 2.8] which states
Z(Q, S3(6);x) = Oε(x

3/8+ε) for all ε > 0. With a more careful analysis we are able to prove

Z
(
Q, S3(6);x) = θ(x1/3). (2)

We remark that the results forS3(6) andC6 are as conjectured sincea(C6) = a(S3(6)) = 1/3 andb(Q,C6) =
b(Q, S3(6)) = 1.

Now we define the counting function corresponding to field towersL/K/Q as above:

Z̃(Q,C3 � C2;x) := #
{
L/Q | ∃K: Gal(L/K) = C3, [K : Q] = 2, |dL| � x

}
.

We have two conjugacy classes of elements of order 3 inG which have three fixed points. Considered
Q-conjugacy classes we have only one orbit. In number fieldsk containing a primitive third root of unityζ3
we have twok-conjugacy classes of this type. Thereforea(G) = 1/2 andb(Q,G) = 1. Since, by (1) and (2), th
counting functions forS3(6) andC6 have lower asymptotics Conjecture 1.3 implies that

Z̃(Q,C3 � C2;x) ∼ Z(Q,C3 � C2;x) ∼ c(G)x1/2.

Certainly we get a lower estimate for̃Z(Q,C3 � C2;x) if we only count the number fields which contain a fix
quadratic subfieldK . We chooseK = Q(ζ3) and usingdL = d3

KN(dL/K) we get forx large enough:

Z̃(Q,C3 � C2;x) � Z(K,C3;x/27) ∼ c(K,C3)x
1/2 log(x).

For the latter we used the fact thatb(K,C3) = 2 and that the conjecture is true for the Abelian groupC3. This
already gives a contradiction to Conjecture 1.3.�

Now we introduce a counting function avoidingQ(ζ3).

Ẑ(Q,C3 � C2;x) := #
{
L/Q | ∃K �= Q(ζ3): Gal(L/K) = C3, [K : Q] = 2, |dL| � x

}
.

Using the averaging results for the 3-ranks of the class group of quadratic fields [3] we can prove that

Ẑ(Q,C3 � C2;x) ∼ c(C3 � C2)x
1/2 for some constantc(C3 � C2) > 0

as predicted by Malle’s conjecture. This means that the cyclotomic intermediate extension is the reason
failure of the conjecture.

We remark that we can produce more counter examples in the same spirit in the following way. DefinG :=
C� � H and assume that there exists anL/Q such that Gal(L/Q) = H and K := L ∩ Q(ζ�) �= Q. We remark
that we have the identitya(G) = a(C�) = � − 1. Now we are in the situation thatb(Q,G) = b(Q,C�) = 1 and
b(K,G) = b(K,C�) = (� − 1)/[K : Q] > 1. Analogously as in the proof of Theorem 2.1 there existsc(G) > 0
such that

Z(Q,G;x) > c(G)xa(G) log(x)b(K,G)−1 for x large enough.

The following example shows that this happens infinitely often.

Example 1.Let G = C� � C2 for an odd prime�. ThenL = K := Q(
√±�) ⊆ Q(ζ�) has the wanted property.

We remark that for� > 3 we are only able to proveZ(Q,C� � C2;x) = O(x3/(2�)) since we do not know goo
estimates for the�-rank of the class group of quadratic fields in these cases.
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3. Comments about the conjecture

It is interesting to look at the global function field case. Malle’s conjecture can be easily generalized
setting and these generalizations are true for Abelian groups [9]. In the function field setting it is natural to c
only extensionsK/Fq(t) such that the normal closure contains no constant field extension. Assuming this an
(unproven) heuristic about the number of points of irreducible varieties overFq , Ellenberg and Venkatesh [5] a
able to deduce

Z
(
Fq(t),G;x) = θ

(
xa(G) log(x)b(Fq (t),G)−1) for gcd(#G,q) = 1.

If we allow constant field extensions we can give the type of counter examples as in the number field ca
choosingq ≡ 2 mod 3 andG = C3 � C2 works as a counter example, when we chooseFq2/Fq as the quadratic
extension.

Constant field extensions are always contained in extensions generated by suitable roots of unity. We
the conjecture in the number field case if we forbid intermediate extensions which are contained in cyc
extensionsQ(ζ�), where� must be chosen from a set containing all orders of elements ofG which have minimal
index. But this is not very natural in the number field case.

The problem in the presented counter examples is that there exist intermediate extensionsK such thatb(Q,G) <

b(K,G). The following example shows that this is not sufficient to produce counter examples. E.g. for the
G = (C3 � C3) × C2 we geta(G) = 1/4, b(Q,G) = 1, b(Q(ζ3),G) = 2. We can prove that

Z(Q,G;x) = θ(x1/4).

Therefore this group does not contradict Conjecture 1.3. Similar to our original example it is possible to
K = Q(ζ3) as an intermediate extension, but this time it does not change the log-factor.

Since we do not know if there are other type of groups which contradict Conjecture 1.3 we do not give
formulation of this conjecture.
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