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Abstract

This Note presents an approximation scheme for second-order Hamilton–Jacobi–Bellman equations arising in s
optimal control. The scheme is based on a Markov chain approximation method. It is easy to implement in any dimens
consistency of the scheme is proved, which guarantees its convergence.To cite this article: R. Munos, H. Zidani, C. R. Acad.
Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Consistance d’un schéma multidimensionnel simple pour les équations de Hamilton–Jacobi–Bellman. Cette Note
présente un schéma d’approximation pour les équations de Hamilton–Jacobi–Bellman qui apparaissent en contrô
stochastique. Le schéma est construit selon une méthode d’approximation par chaîne de Markov. Il s’implémente f
en n’importe quelle dimension. La consistance du schéma est prouvée, ce qui garantit sa convergence.Pour citer cet ar-
ticle : R. Munos, H. Zidani, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We consider a multidimensional controlled Markov diffusion onX = R
n (n � 1)

x(t) = x +
t∫

0

f
(
x(s), u(s)

)
ds +

t∫
0

σ
(
x(s), u(s)

)
dWs, (1)
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where(Wt)0�t�∞ is a standard Brownian motion inRn on a filtered probability space(Ω,F , (Ft )0�t�∞,P),
with the usual assumptions on the filtration(Ft )0�t�∞. The controlu(t) is a Lebesgue measurable functi
with values in a compact setU ⊂ R

m, m � 1. We consider an infinite horizon discounted payoffJ (x;u(·)) =
E[∫ ∞

0 e−βt l(x(t), u(t))dt], with l the cost function andβ > 0 the discount factor. The value function is the mi
mum value of the payoff

V (x) = inf
u(·) J

(
x;u(·)). (2)

The Hamilton–Jacobi–Bellman (HJB) equation associated with the optimal control problem is

−βv(x) + min
u∈U

[
n∑

i=1

fi(x,u)∂xi
v(x) + 1

2

n∑
i,j=1

aij (x,u)∂2
xi ,xj

v(x) + l(x, u)

]
= 0, for x ∈ X

wherea(x,u) = σ(x,u)σ (x,u)′ is the covariance matrix.
In this Note, we present a simple numerical scheme for the HJB equation on a gridXh (h being the grid

resolution) based on the method of Markov chain approximation [4] and prove the consistency proper
guarantees the convergence of the discrete solutionsV h of the dynamic programming equation (5) to the va
functionV defined by (2). It is known [4,5] that when the covariance matrixa is diagonal dominant, one can u
the classical finite difference scheme which has the advantage to be convergent and easy to implementa

is not diagonal dominant, the generalized finite difference (GFD) scheme [1] provides a consistent sche
requires (for each grid point) the computation of the appropriate stencil of grid points entering into the sch

In two dimensions, the implementation of the GFD scheme is inexpensive (see [2] for a fast algorithm)
ever, in higher dimensions (n � 3), this scheme is not easy to implement for a general covariance matrix. O
other hand, several works deal with the nonlocal but consistent Semi-Lagrangian scheme (see for examp
such a scheme, the state is approximated by a discrete process:

yt+τ = yt + τf (yt , u) + √
τ σjt ξt , (3)

whereτ is a time step,σj denotes thej th-column ofσ , jt ∈ {1, . . . , n} andξt ∈ {−1
2,+1

2} are sequences of i.i.d
uniform random variables. Here, we consider rather the following approximation:

yt+τ = yt + τf (yt , u) + ηjt vjt ξt ,

wherejt and ξt arenon-uniform random variables, andvj are the eigenvectors of the covariance matrix. T
diffusion stepsηj are chosen in order to obtain a consistent scheme, yet they are not necessarily equal. This
is also nonlocal: the diffusion steps being, for a typical implementation, of orderhα , with α < 1. The scheme is
easy to implement and provides an interesting alternative to Finite-Differences approaches. Moreover, it is
unstructured grids.

Another appealing feature is the possible utilization of the balance conditions (6) and (7) between the
and the diffusion steps to design boundary conditions while preserving local consistency. This point is curre
der investigation and numerical experiments for comparison with the scheme (3) will be the object of futur

2. Markov Decision Process approximation

Consider the gridXh ⊂ X, whereh is theresolution of the grid(i.e. for allx ∈ X, there existsxi ∈ Xh such that
‖x − xi‖ � h). For each grid pointxi ∈ Xh and controlu ∈ U , define adiscretization time-stepτ(xi, u) and the
drifted pointy(xi, u) = xi + τ(xi, u)f (xi, u). Write {αj (xi, u)}1�j�q (with q � n) the eigenvalues ofa(xi, u) that
are (strictly) positive and{vj (xi, u)}1�j�q the corresponding normalized eigenvectors. Sincea(xi, u) is a positive
semi-definite matrix, one may write

a(xi, u) =
q∑

αj (xi, u)vj (xi, u)v′
j (xi, u). (4)
j=1
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Fig. 1. Construction of the MDP approximation scheme. Hereq = n = 2.

Let us introduce 2q positive values, calleddiffusion steps, {ηj (xi, u)}1�j�q and−q�j�−1 which define the
diffused points{zj (xi, u)}−q�j�q (see Fig. 1):

zj (xi, u) =




y(xi, u) + ηj (xi, u)vj (xi, u) for 1� j � q,

y(xi, u) for j = 0,

y(xi, u) − ηj (xi, u)v−j (xi, u) for − q � j � −1.

Now, consider a grid-basedlocal linear interpolation process: for any statex, there exists a finite set of positiv
coefficients{λ(xk|x)} (wherexk ∈ Xh) such that

∑
k λ(xk|x) = 1,

∑
k λ(xk|x)xk = x, and such that the grid poin

xk whose coefficientλ(xk|x) are strictly positive are at a distanceO(h) from x.
Examples of local linear interpolation processes:

– Piecewise linear interpolation on a triangulation. The {λ(xk|x)} are the barycentric coordinates ofx in the
simplexT � x. Thus, there are at mostn+1 non-zero coefficients{λ(xk|x)} corresponding to the vertices{xk}
of T .

– Piecewise Multi-linear interpolation on a grid. The{λ(xk|x)} are the multi-linear interpolation coefficients
x in then-dimensional rectangleR � x. There are at most 2n non-zero such coefficients.

An example of an efficient local linear interpolation process in any dimension, consisting of a Co
Freudenthal–Kuhn triangulation embedded in akd-tree, is described in [6].

Now, consider some positiveweights{ρj (xi, u)}−q�j�q which sum to one (i.e.
∑q

j=−q ρj (xi, u) = 1).
The Markov Decision Process approximationis then defined by the state spaceXh, the control spaceU , the

cost functionc(xi, u) = l(xi, u)τ (xi, u), and the transition probabilities

p(xk|xi, u) =
q∑

j=−q

ρj (xi, u)λ
(
xk|zj (xi, u)

)
.

The corresponding dynamic programming equation is:

V h(xi) = min
u∈U

[
e−βτ(xi ,u)

∑
k

p(xk|xi, u)V h(xk) + c(xi, u)

]
. (5)

Proposition 2.1. Defineτh,min and τh,max such that for allh, for all xi ∈ Xh,u ∈ U , τh,min � τ(xi, u) � τh,max.
Assume that the weights and diffusion steps satisfy the balance conditions: for allxi ∈ Xh,u ∈ U , for all 1� j � q,

ρj (xi, u)ηj (xi, u) = ρ−j (xi, u)η−j (xi, u), (6)

ρ (x ,u)η2(x ,u) + ρ (x ,u)η2 (x ,u) = α (x ,u)τ(x ,u). (7)
j i j i −j i −j i j i i
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Then, under the CFL conditionh2 = o(τh,min) and assumingτh,max = O(1), this approximation scheme is cons
tent in the sense of Kushner and Dupuis([4], p.71). More precisely,

Exi
[xk − xi] = τ(xi, u)f (xi, u), (8)

Exi

[
xk − Exi

[xk]
][

xk − Exi
[xk]

]′ = τ(xi, u)a(xi, u) + o(τh,min). (9)

Proof. In what follows we use simplified notation, writingf , a, τ , y, zj , ηj , α, vj , andρj instead off (xi, u),
a(xi, u), τ(xi, u), y(xi, u), zj (xi, u), ηj (xi, u), α(xi, u), vj (xi, u), andρj (xi, u).

Property (8) derives from the definition of the interpolation coefficients:

Exi
[xk − xi] = ∑

k p(xk|xi, u)(xk − xi) = ∑q
j=−q ρj

∑
k λ(xk|zj )(xk − xi)

= ∑q
j=−q ρj

[∑
k λ(xk|zj )(xk − zj ) + zj − y + y − xi

] = y − xi = τf

since
∑

k λ(xk|zj )xk = zj and
∑q

j=−q ρj zj = y + ∑q

j=1(ρjηj − ρ−j η−j ) = y from (6).
Property (9) follows from the decomposition

Exi

[
xk − Exi

[xk]
][

xk − Exi
[xk]

]′ = ∑
k p(xk|xi, u)(xk − y)(xk − y)′

= ∑q
j=−q ρj

[∑
k λ(xk|zj )(xk − zj )(xk − zj )

′ + (zj − y)(zj − y)′
]

because
∑q

j=−q ρj

∑
k λ(xk|zj )(xk − zj )(zj − y)′ = 0.

Since the interpolation process is local, i.e. for allk such thatλ(xk|zj ) > 0, xk − zj = O(h), we deduce tha∑q
j=−q ρj

∑
k λ(xk|zj )(xk − zj )(xk − zj )

′ = O(h2).

Now, by noticing that(zj − y)(zj − y)′ = η2
j vj v

′
j , from (4) and (7) we deduce that∑q

j=−q ρj (zj − y)(zj − y)′ = ∑q

j=1(ρjη
2
j + ρ−j η

2−j )vj v
′
j = ∑q

j=1 αj τvjv
′
j = τa.

Thus, from the CFL condition, we have

Exi

[
xk − Exi

[xk]
][

xk − Exi
[xk]

]′ = a(xi, u)τ + o(τh,min). �
Remark 1. Here are some specific cases for which the conditions (6) and (7) hold :

– The weights are constantρj = ρ = 1/(2q) for j �= 0 andρ0 = 0. Thus the stepsηj = √
αj τq.

– The stepsηj are constantηj = η. If we chooseρ0 = 0 then forj � 1 the weightsρj = αj
τ

2η2 . Since they sum

to one, we deduce thatρj is proportional toαj : for j � 1, ρj = αj/(2
∑q

i=1 αi).
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