
1/

é-

f
e

locus
C. R. Acad. Sci. Paris, Ser. I 340 (2005) 131–134
http://france.elsevier.com/direct/CRASS

Algebraic Geometry

A lower bound for the dimension of the base locus
of the generalized theta divisor

Daniele Arcara

Department of Mathematics, University of Utah, 155 S. 1400 E., Room 233, Salt Lake City, UT 84112-0090, USA

Received 24 September 2004; accepted 30 November 2004

Available online 30 December 2004

Presented by Michel Raynaud

Abstract

We produce a lower bound for the dimension of the base locus of the generalized theta divisorΘr on the moduli space
SUC(r) of semistable vector bundles of rankr and trivial determinant on a smooth curveC of genusg � 2. To cite this article:
D. Arcara, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une borne inférieure pour la dimension du lieu de base du diviseur thêta généralisé. Nous déterminons une borne inf
rieure pour la dimension du lieu de base du diviseur thêta généraliséΘr sur l’espace des modulesSUC(r) des fibrés vectoriels
semi-stables de rangr et de determinant trivial sur une courbe lisseC de genreg � 2. Pour citer cet article : D. Arcara, C. R.
Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let C be a smooth irreducible complex projective curve of genusg � 2. Let UC(r) be the moduli space o
(S-equivalence classes of) semi-stable vector bundles of rankr and degree 0, and letSUC(r) be the moduli spac
of (S-equivalence classes of) semi-stable vector bundles of rankr and trivial determinant.

The Picard group ofSUC(r) is generated by an ample line bundle (see [4]), that we shall denote byLr . A divisor
Θr onSUC(r) such thatLr =OSUC(r)(Θr) is called a generalized theta divisor. We are interested in the base
of its linear system.
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A vector bundleE ∈ SUC(r) is in the base locus of the generalized theta divisor if and only ifH 0(E ⊗ L) �= 0
for every line bundleL on C of degreeg − 1 (see [1] forr = 2 and [3] in general). Raynaud studied bundles w
a similar property in [8], and Beauville summarizes his results as follows in [2].

Theorem 1.1 (Raynaud).

(a) For r = 2, the linear system |Θ2| has no base points.
(b) For r = 3, |Θ3| has no base points if g = 2, or if g � 3 and C is generic.
(c) Let n be an integer � 2 dividing g. For r = ng , the linear system |Θr | has base points.

For part (c), Raynaud actually constructs, for everyn � 2 andg, a vector bundles of rankng and slopeg/n

without the property that he calls(∗). The bundles without the property(∗) can be easily used to produce vec
bundles in the base locus of the generalized theta divisor if their slope is integral, hence part (c) of the
above. Note also that Popa generalized Raynaud’s construction in [7].

Using the dualEL of the kernel of the evaluation mapeL for a line bundleL generated by its global section
and its exterior powers, Popa [6] and Schneider [9] proved the existence of other vector bundles in the ba
of the generalized theta divisor.

In particular, Schneider defines a condition(R), which implies Raynaud’s condition(∗), as follows: A vector
bundlesE has the property(R) if, for everyn ∈ Z and any generic line bundleL of degreen, H 0(E ⊗ L) = 0 or
H 1(E ⊗ L) = 0. He then proves the following proposition.

Proposition 1.2 (Schneider). Let C be a smooth complex projective curve of genus g � 2. If L is a line bundle of
degree greater than or equal to 2g + 2, then ΛpEL does not verify (R) for every p ∈ {2, . . . , rk(EL) − 2}.

Under the assumption of the proposition,EL is stable (see [5]), and thereforeΛpEL is semi-stable. Wheneve
the slope ofΛpEL is integral, this easily produces examples of vector bundles in the base locus of the gene
theta divisor.

As our first result, we prove that every vector bundles without the property(R) ‘produces’ a vector bundle in th
base locus of the generalized theta divisor, hence making it possible to use all of the bundles studied by R
Popa, and Schneider, even the ones with non-integral slope.

Theorem 1.3. If E is a semi-stable vector bundle of rank r on C which does not satisfy the property (R), then the
base locus of |Θr | is non-empty.

As a corollary, using Raynaud’s and Schneider’s results, we obtain the following corollary.

Corollary 1.4. The base locus of |Θr | is non-empty for r = 2g and r = (g + 1)(g + 2)/2.

As Popa points out in [6], this implies that the base locus is also non-empty for any bigger rank (ifE is in the
base locus of|Θr |, just takeE ⊕O⊕n

C ). If we let r0 be the lowest rank such that the base locus of|Θr | is non-empty,
the corollary above can be restated as

r0 � min

{
2g,

(g + 1)(g + 2)

2

}
.

We produce the following lower bound for the dimension of the base locus of|Θr |:
Proposition 1.5. Let C be a smooth complex projective curve of genus g. Then the dimension of the base locus of
|Θr | is at least (r − r0)

2(g − 1) + 1, where r0 is the minimum rank for which the base locus of the generalized
theta divisor is non-empty.
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2. Proof of Theorem 1.3

If µ is a rational number, we shall denote by�µ� the largest integer less than or equal toµ and by�µ	 the
smallest integer greater than or equal toµ.

Schneider proves in [9] that a vector bundleE satisfies the condition(R) if and only if it satisfies the two
following conditions:

(1) H 1(E ⊗ L) = 0 for a generic line bundleL of degreeg − 1− �µ(E)�;
(2) H 0(E ⊗ L) = 0 for a generic line bundleL of degreeg − 1− �µ(E)	.

Let E be a semi-stable vector bundle of rankr which does not satisfy the property(R). If µ(E) is an integer,
thenE ⊗ L is in the base locus of|Θr |, whereL is a line bundle of degreeg − 1− µ(E) such thatL−r 
 detE. If
µ(E) is not an integer, there are two cases.

Case I: For every line bundleL of degreeg − 1− �µ(E)�, H 1(E ⊗ L) �= 0.
Let Cp be a skyscreaper sheaf of degree 1 supported at a pointp of C, let E → Cp be a non-zero map, and l

E′ be the kernel: 0→ E′ → E → Cp → 0. SinceH 1(Cp) = 0,E′ also satisfies the condition thatH 1(E′ ⊗L) �= 0
for every line bundleL of degreeg − 1− �µ(E)�. Moreover,�µ(E′)� = �µ(E)�. There are now two subcases.

Subcase I.1:E′ is semi-stable. ThenE′ is a semi-stable vector bundle of slopeµ(E′) < µ(E) with �µ(E′)� =
�µ(E)� such thatH 1(E′ ⊗ L) �= 0 for every line bundleL of degreeg − 1− �µ(E′)�.

Subcase I.2:E′ is not semi-stable. Letµ be the maximum slope of a vector sub-bundle ofE′, and letF ′
be a sub-bundle of maximal rank among all of the sub-bundles of slopeµ. Then there exists a short exact s
quence 0→ F ′ → E′ → G′ → 0 with F ′ andG′ stable vector bundles. By semi-continuity, we obtain that ei
H 1(F ′ ⊗ L) �= 0 for every line bundleL of degreeg − 1− �µ(E)� or H 1(G′ ⊗ L) �= 0 for every line bundleL of
degreeg −1−�µ(E)�. Let us show thatµ(F ′) andµ(G′) are both� �µ(E)�. Clearly,µ(F ′) > µ(E′) � �µ(E)�.
For G′, note that it is contained inG = E/F ′, and µ(G) � µ(E) > �µ(E)�. Therefore,µ(G′) = µ(G) −
1/rk(G) � �µ(E)�. Sinceµ(F ′) andµ(G′) are clearly� µ(E), this shows that�µ(F ′)� = �µ(G′)� = �µ(E)�.
Therefore, eitherF ′ or G′ is a semi-stable vector bundleE′′ of slopeµ(E′′) � �µ(E)� and rank rk(E′′) < r with
�µ(E′′)� = �µ(E)� such thatH 1(E′′ ⊗ L) �= 0 for every line bundleL of degreeg − 1− �µ(E′′)�.

We can now continue our process by replacingE with eitherE′, if it is semi-stable, or with theE′′ constructed
in the case whenE′ is not semi-stable. The process eventually ends when the slope becomes integral. This
because the slopes of the vector bundlesconstructed at each step is bounded below by�µ(E)� and at each ste
either the slope or the rank is decreasing.

To conclude the proof in this case, note that, if the vector bundle in the base locus of the generalized thet
constructed has rankr ′ < r, we can always produce one in the base locus of the generalized theta divisor by
its direct sum withr − r ′ copies ofOC .

Case II: For every line bundleL of degreeg − 1− �µ(E)	, H 0(E ⊗ L) �= 0.
The proof in this case is very similar to the proof of Case I, except that we now start by takingE′ to be a

non-trivial extension ofCp by E.

3. Proof of Proposition 1.5

To simplify the proof of Proposition 1.5, let us point out the following result, which is probably well-known
We prove it here because we could not find a proof in the literature.

Proposition 3.1. Every vector bundle in the base locus of |Θr0| is stable.
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Proof. Let E be a vector bundle in the base locus of|Θr0|. ThenE is in the same equivalence class as its associ
grading

⊕k
i=1 Gri from its Jordan–Hölder filtration. SinceH 0(E ⊗ L) �= 0 if and only if there exists ani such that

H 0(Gri ⊗L) �= 0, by semicontinuity there exists ani such that Gri is in the base locus of|ΘrkGri |. By the minimality
of r0, rkGri = r0, k = 1, andE = Gr1 is stable. �

We are now ready to prove Proposition 1.5. LetE be a vector bundle in the base locus of|Θr0|. ThenE is stable
by Proposition 3.1. Letn = r − r0, and consider the morphism

ϕ :JC × UC(n) → UC(r), ϕ(L,F ) = (E ⊗ L) ⊕ F,

whereJC is the Jacobian ofC. If we let A = {(L,F ) ∈ JC × UC(n) | Lr ⊗ detF 
 OC}, then, by projecting
A onto UC(n), it is easy to see that dimA = dimUC(n) = n2(g − 1) + 1. Moreover, dimϕ(A) = dimA, and
ϕ(A) = ϕ(JC × UC(n)) ∩ SUC(r) is contained in the base locus of|Θr |.
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