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Abstract

In this Note, we establish a new partial regularity theory on certain homogeneous complex Monge–Ampere equati
partial regularity theory is obtained by studying foliations by holomorphic disks and their relation to these equationsTo cite
this article: X.X. Chen, G. Tian, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Régularité partielle pour des équations de Monge–Ampère complexes.Dans cette Note, on établit un nouveau résulta
égularité partielle pour certaines équations complexes de Monge–Ampère. On obtient ces résultats en étudiant des f
par des disques holomorphes et leurs relations avec ces équations.Pour citer cet article : X.X. Chen, G. Tian, C. R. Acad. Sci.
Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

At the end of [3], we introduced the notion of almost smooth solutions. In this Note, we briefly discuss h
prove the existence of almost smooth solutions of the following Dirichlet problem for the homogeneous c
Monge–Ampere equation:

(π∗
2ω + ∂∂̄φ)n+1 = 0 onΣ × M, φ|∂Σ×M = ψ, (1)

whereΣ is the unit disc inC.

Theorem 1.For a generic boundary map ψ : ∂Σ →Hω , there exists a unique almost smooth solution φ of (1).
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for (1).
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The partial regularity in Theorem 1 is sharp since we do have examples of solutions with singularity
This theorem is proved by establishing a foliation by holomorphic discs with mild singularity.

First we recall a construction from [7]: associate a complex symplectic manifoldW[ω] to each Kähler class[ω]:
Let {Ui} be a covering ofM such thatω|Ui

= √−1∂∂̄ρi , we identify (x, vi) ∈ T ∗Ui with (y, vj ) ∈ T ∗Uj if
x = y ∈ Ui ∩ Uj andvi = vj + ∂(ρi − ρj ), thenW[ω] consists of all these equivalence classes of[x, vi]. The
complex structure onT ∗M induces an natural complex structure onW[ω] and there is also a canonical holomorp
2-formΩ onW[ω], in terms of local coordinateszα, ξα (α = 1, . . . , n) of T ∗Ui ,

Ω = dzα ∧ dξα.

Now for anyϕ ∈ H[ω], we can associate a complex submanifoldΛϕ in W[ω]: for any open subsetU on whichω

can be written as
√−1∂∂̄ρ, we defineΛϕ |U = the graph of∂(ρ +ϕ). Clearly, thisΛϕ is independent of the choic

of U . A straightforward computation shows

Ω|Λϕ = −√−1ωϕ, (2)

that is, Re(Ω)|Λϕ = 0 and− Im(Ω)|Λϕ = ωϕ > 0. This means thatΛϕ is an exact Lagrangian symplectic su
manifold ofW[ω], i.e., it is Lagrange w.r.t. Re(Ω) while it is symplectic w.r.t. Im(Ω). Conversely, given an exa
Lagrangian symplectic submanifoldΛ of W[ω], we can construct a smooth functionϕ such thatΛ = Λϕ . Hence,
Kähler metrics with Kähler class[ω] are in one-to-one correspondence with exact Lagrangian symplectic sub
ifolds in W[ω].

Let ψ be a smooth function on∂Σ × M such thatψ(τ, ·) ∈H[ω] for anyτ ∈ ∂Σ . Define

Λ̄ψ = {
(τ, v) ∈ ∂Σ ×W[ω] | v ∈ Λψ(τ,·)

}
. (3)

One can show that̄Λψ is a totally real submanifold inΣ ×W[ω].
It is proved in [7] (also see [5]) states that there is a one-to-one correspondence between smooth solutφ of

(1) and holomorphic foliations ofΣ × M induced by holomorphic discshx :Σ �→W[ω] (x ∈ M) with boundary in
Λ̄ψ such that all leaves are transversal toM andπ(hx(0)) = x.

One of our crucial observations is that Semmes’ arguments can be made local along super-regular holo
discs. We will introduce the notion of nearly smooth foliations and show that they correspond to almost
solutions. Then Theorem 1 will be proved by constructing a nearly smooth foliation for a generic boundary

Given a boundary valueψ , we denote byMψ the corresponding moduli space of holomorphic discs. Fir
follows from the Index theorem that the expected dimension of this moduli is 2n. Recall that a holomorphic discu
is calledregular if the linearized∂̄-operator∂̄u has vanishing cokernel. The moduli space is smooth near a re
holomorphic disc. Following [5], we callu super-regular if there is a basiss1, . . . , s2n of the kernel of∂̄u such
that dπ(s1)(x), . . . ,dπ(s2n)(x) spanTu(x)M for everyx ∈ Σ , whereπ :W[ω] �→ M is the natural projection. W
call u almost super-regular if dπ(s1)(x), . . . ,dπ(s2n)(x) spanTu(x)M for everyx ∈ Σ\∂Σ . Clearly, the set o
super-regular discs is open.

Definition 2. Supposeψ : ∂Σ → Hω is given. A nearly smooth foliation ofMψ associated to the boundary m
ψ is given by an open subsetUψ ⊂ Mψ of super-regular discs whose images inΣ × M give rise to a foliation on
an open-dense subsetVψ ⊂ Σ × M satisfying:

(i) This foliation can be extended to be a continuous foliation ofṼψ ⊂ Σ0 × M by holomorphic discs whos
complement is locally extendable;2

(ii) The extended foliation admits a continuous lifting inΣ ×WM ;
(iii) The foliation in Vψ is uniformly transversal to any vertical fiber{z} × M .

2 A closed subsetS ⊂ Σ × M is locally extendable if for any continuous function inΣ × M which isC1,1 on Σ × M \ S can be extended
to aC1,1 function onΣ × M . Note that any subset of codimension 2 or higher is automatically locally extendable.
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Theorem 3.For a generic boundary value ψ , an almost smooth solution of (1) corresponds to an nearly smooth
foliation.

Because of this theorem, Theorem 1 follows from the following:

Theorem 4.For a generic boundary value ψ , there is a nearly smooth foliation generated by an open set of the
corresponding moduli space Mψ .

Now we outline the proof of Theorem 4. Letψ be a generic boundary value such thatMψ is smooth. This
follows from a result of Oh [6] on transversality. By a similar (but different) transversality argument, on
show that there is a generic pathψt (0 � t � 1) such thatψ0 = 0 andψ1 = ψ and the total moduli spacẽM =⋃

t∈[0,1] Mψt is smooth, moreover, we may assume thatMψt are smooth for allt except finitely manyt1, . . . , tN
where the moduli space may have isolated singularities. First we observe thatM0 has at least one compone
which gives a foliation forΣ × M . We want to show that this component will deform to a component ofMψ

which generates a nearly smooth foliation. We will use the continuity method. Assume thatφ is the uniqueC1,1-
solution of (1) with boundary valueψt for somet ∈ [0,1]. Let f be any holomorphic disc in the component
Mψt which generates the corresponding foliation.

It follows from an extension of Gromov’s compactness theorem, any sequence of holomorphic discs w
formly bounded area has a subsequence which converges to a holomorphic disc together with finitely many
This is still true in our case, even though we can only show a uniform area bound on the image of any holo
discf ∈ Mψt in Σ × M instead off itself. These bubbles which occur in the interior are holomorphic sph
while bubbles in the boundary might be holomorphic spheres or discs.

For a fixed totally real submanifold, holomorphic bubbles cannot occur in the boundary. If a sequence o
real submanifolds converges to a given totally real submanifold, there are two limiting processes, one c
how fast the bubbles form and move to the boundaries of discs, while the other is how fast the sequence
real submanifolds approaches to the limiting submanifold. The uniformC1,1 bound onφ can be used to show th
the two limiting processes are exchangeable. Consequently, there are no bubbles along the boundary.

A solution of (1) can be regarded as a twisted harmonic map fromΣ into the infinite dimensional spaceHω

(cf. [5]). According to [1], this infinite dimensional spaceHω is non-positively curved in the sense of Alexandr
Heuristically speaking, we can rule out the possibility of interior bubbles by exploring this curvature con
Indeed, there is a rigorous proof for this fact. We refer the readers to [4] for a detailed proof.

Since there are no bubbles either in the boundary or interior ofΣ , the Fredholm index of holomorphic discs
invariant in limiting process. This is an important fact needed in our using deformation theory.

In order to get a nearly smooth foliation, we need to prove that the moduli space has an open set o
regular holomorphic discs for eacht . First we observe that the set of super-regular discs is open. Moreover,
the transversality arguments, one can show that for a generic pathψt , the closure of all super-regular discs in ea
Mψt is either empty or forms an irreducible component. It implies the openness. It remains to prove th
moduli space has at least one super-regular disc. It is done by using capacity estimate which we explain
the following.

Consider the bundleE = π∗
2T M overΣ ×M . Each almost smooth solutionφ of (1) induces an Hermitian metri

onE |Vψ
, whereVψ was defined in Definition 2. Iff is a super-regular disc, thenE pulls back to a Hermitian bundl

over Σ with fiber Tf (z)M and metricωφ(z,·)(f (z)) over z ∈ Σ . It turns out that the curvature of this Hermitia
bundle is non-positive. This fact plays a crucial role in our work. More precisely, we have

Lemma 5.Let φ be a solution of (1) and f be a super-regular holomorphic disc as above, then the curvature form
F of the metric gφ described above is given by gφ(F (u), v) = −gφ(u(∂zf ), v(∂zf )), u, v ∈ T M. In particular,
the curvature is non-positive. Moreover, the foliation is holomorphic along f if and only if the curvature vanishes.

The determinant∧nE restricts to a Hermitian line bundle over any given super-regular disc. The correspo
Hermitian metric, denoted byf ∗ωn

φ , at z is ωn
φ(z,·)(f (z)). An immediate corollary of above lemma is that t
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curvature of this line bundle is non-positive.3 Moreover, there are constantsC1,C2 which depend only on th
background metricω such that

�

(
log

f ∗ωn
φ

f ∗ωn
+ C1ϕ

)
� 0, and �

(
log

f ∗ωn
φ

f ∗ωn
+ C2ϕ

)
� − tr(F ), (4)

where� denotes the standard Laplacian operator onΣ andϕ(z) = φ(z,f (z)). It follows that log
f ∗ωn

φ

f ∗ωn + C1ϕ is

subharmonic and uniformly bounded on the boundary∂Σ . TheC1,1-estimate in [2] implies that this function

uniformly bounded from above. Moreover, the difference of two functions log
f ∗ωn

φ

f ∗ωn + C1ϕ and log
f ∗ωn

φ

f ∗ωn + C2ϕ is
uniformly bounded. In addition, we have

−� tr(F ) � 2

n

(− tr(F )
)2

. (5)

According to a result of Osserman, we can derive an interior estimate on tr(F ) (see [4] for details). Applying this

estimate on tr(F ) to the above equations, we can derive a Harnack-type inequality
f ∗ωn

φ

f ∗ωn in the interior ofΣ .
Now let us introduce the notion of Capacity for super-regular holomorphic discs:

Definition 6. For any super-regular discf in an moduli spaceMψ , we define its capacity by Cap(f ) =∫
Σ

f ∗ωn

f ∗ωn
φ

√−1
2 dz ∧ dz̄.

Using the Harnack-type inequality mentioned above, one can control the lower bound of
f ∗ωn

φ

f ∗ωn in the interior of
σ in terms of upper bound of the capacity off . This has an important corollary for compactness of super-reg
discs with uniformly bounded capacity.

Theorem 7.Let fi be any sequence of super-regular discs in Mψti
which converges smoothly to an embedded disc

f∞ in Mψt∞ . If the capacities Cap(fi) are uniformly bounded, then the limiting disc f∞ is also super-regular.

In fact, Lemma 5 was already needed when we extended Semmes’ correspondence to almost smooth
of (1) and nearly smooth foliations. For this local extension, we first construct smooth solutions of (1) along
regular leaves and then glue them together to a solutionφ on an open and dense subsetVφ ⊂ Σ × M , but we need
to establish a globalC1,1-bound ofφ onVφ . Once this bound is established, the maximum principle implies thφ

coincides with the solution in [2]. TheC1,1-bound ofφ follows from the following

Theorem 8.For any global holomorphic section s :Σ → E , the norm of s with respect to gφ achieves its maximum
value at the boundary of the disc.

References

[1] E. Calabi, X.X. Chen, Space of Kähler metrics. II, J. Differential Geom. 61 (2002) 173–193.
[2] X.X. Chen, Space of Kähler metrics, J. Differential Geom. 56 (2000) 189–234.
[3] X.X. Chen, G. Tian, Uniqueness of extremal Kähler metrics, C. R. Acad. Sci. Paris, Ser. I 340 (4) (2005).
[4] X.X. Chen, G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Preprint, 2004.
[5] S.K. Donaldson, Holomorphic discs and the complex Monge–Ampere equation, J. Symplectic Geometry 1 (2002) 171–196.
[6] Y.-G. Oh, Riemann–Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J. 35 (1995) 38
[7] S. Semmes, Complex Monge–Ampere and sympletic manifolds, Amer. J. Math. 114 (1992) 495–550.
3 This fact using a different method, was known to the first name author and S.K. Donaldson in 1998 while both of them were visiting
Stanford University.


