
1/

n-
les

le des

ion
C. R. Acad. Sci. Paris, Ser. I 340 (2005) 93–98
http://france.elsevier.com/direct/CRASS

Calculus of Variations

Non-differentiable functionals and singular sets of minima

Jan Kristensena, Giuseppe Mingioneb

a Mathematical Institute, University of Oxford, St. Giles’ 24-29, Oxford OX1 3LB, UK
b Dipartimento di Matematica, Università di Parma, via D’Azeglio 85/a, 43100, Parma, Italy

Received 2 November 2004; accepted 5 November 2004

Available online 21 December 2004

Presented by John M. Ball

Abstract

We provide bounds for the Hausdorff dimension of the singular set of minima of functionals of the type
∫
Ω F(x, v,Dv),

whereF is only Hölder continuous with respect to the variables(x, v). To cite this article: J. Kristensen, G. Mingione, C. R.
Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Fonctionnelles non-différentiable et l’ensembles singulier des minima. Nous bornons la dimension de Hausdorff de l’e
semble singulier des minima de fonctionnelles du type

∫
Ω F(x, v,Dv) oúF n’est Hölderienne que par rapport aux la variab

(x, v). Pour citer cet article : J. Kristensen, G. Mingione, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit Ω un domaine régulier deRn, n � 2. Dans cette note nous nous intéressons à la régularité partiel
minima de fonctionnelles de la forme

F [v] =
∫
Ω

F
(
x, v(x),Dv(x)

)
dx (1)

qui sont définies surW1,p(Ω,R
N), N � 2, p > 1. Dans le cas où la densité d’énergieF = F(x, y, z) vérifie (2)

(i.e., est Hölderienne d’exposantα par rapport aux variables(x, y) et estC2 par rapport àz) il est connu qu’un
minimumu deF est de classeC1,α

loc en dehors un ferméΣu ⊂ Ω de mesure de Lebesgue nulle [6,7]. L’estimat
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1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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de la dimension de Hausdorff deΣu est un problème essentiel de la théorie de la régularité partielle des m
deF ([4], page 117). Plus précisement la question est de savoir si la dimension de Hausdorff deΣu est inferieure
àn. Nous démontrons qu’il existe une constanteδ > 0 qui ne dépend que deF , α, n, N etp telle que dimH(Σu) �
n − min{α, δ} pour toutu ∈ W1,p(Ω,R

N) minimum deF .
La difficulté principale de notre analyse vient de la non différentiabilité de la densitéF par rapport ày qui

prévent l’existence de l’équation d’Euler–Lagrange associeé àF . Nous développens une technique d’estimation
la dimension de Hausdorff deΣu qui n’utilise pas l’équation d’Euler–Lagrange associée à la fonctionnelle étudi
Cette nouvelle technique est basée sur des estimations elliptiques dans les espace de Sobolev fractionnaires
nouveau principe de comparaison et lemme de Gehring.

1. Singular set estimates

Consider an integral functional of the type (1), wherev ∈ W1,p(Ω,R
N), Ω ⊂ R

n is a bounded and ope
domain,n,N � 2, p > 1 andF :Ω × R

N × R
nN → R. The regularity problem for minimizers ofF , i.e. maps

u ∈ W1,p(Ω,R
N) such thatF [u] � F [v] for all v ∈ u + W

1,p

0 (Ω,R
N), is classical in the Calculus of Variation

The reader is referred to the recent monograph of Giusti [7] for a comprehensive introduction to the subject.
We require the following list of properties of the energy densityF :




F(x, y, ·) is C2,

ν|z|p � F(x, y, z) � L
(|z|p + 1

)
,

ν
(
1+ |z|2)(p−2)/2|λ|2 �

〈
Fzz(x, y, z)λ,λ

〉
� L

(
1+ |z|2)(p−2)/2|λ|2,∣∣F(x1, y1, z) − F(x2, y2, z)

∣∣ � L̃min
{
1, |x1 − x2|α + |y1 − y2|α

}(|z|p + 1
)
,

(2)

wherez,λ ∈ R
nN , x, x1, x2 ∈ Ω and y, y1, y2 ∈ R

N . Here we assume that the constants and exponents
isfy p � 1, 0 < ν � L � L̃ and α ∈ (0,1]. Note in particular that (2)4 means that the function(x, y) �→
F(x, y, z)/(|z|p + 1), is Hölder continuous with exponentα, uniformly in z. The assumptions in (2) are standa
in the regularity theory for minima of integral functionalsF (see e.g. [4,7]).

In the scalar case N = 1, where the functionalF is defined on real valued functions, assumptions (2) a
to prove full interior regularity: the gradientDu of a minimizeru ∈ W1,p(Ω) is locally Hölder continuous inΩ
(and in fact is as regular asF is). This is false in thevectorial case n, N � 2, where celebrated counterexamp
[11,13] show that minimizers can be singular (e.g., Lipschitz, but notC1). Instead, work has focused on provi
so-calledpartial regularity: there exists an open subsetΩu ⊂ Ω such thatu ∈ C

1,σ
loc (Ωu,R

N) for someσ > 0 and
|Ω \ Ωu| = 0 (see [5–7]). The set

Σu := Ω \ Ωu (3)

is called the singular set of the minimizeru.
The main open problem in the theory concerns the size of the singular setΣu: Is partial regularity in the sense

that |Σu| = 0 optimal? In case the answer is negative, the problem is to give bounds for the Hausdorff dim
of Σu; see question (a), page 117 of [4].

There are no previous results about the Hausdorff dimension of singular sets of minima for general
functionals (1). The only such estimates in the literature concern minima of very special functionals, like
quadratic functionals and functionals of the type

v �→
∫
Ω

a
(
x, v(x)

)∣∣Dv(x)
∣∣p dx

under suitable Hölder continuity andboundedness assumptions on the functiona :Ω × R
N → R, see [1,5].
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When the Hölder continuity exponentα in (2) is strictly smaller than one, an obvious obstacle is the pos
nondifferentiability ofF = F(x, y, z) with respect toy. This causes the functionalF in (1) to benon-differentiable,
and, crucially, the Euler–Lagrange system is not available. However, even whenF is smooth the hypotheses (
do not garantee that the Euler–Lagrange system divFz(x,u,Du) = Fy(x,u,Du) is well-behaved (whenα < 1, no
growth condition forFy follows from (2) and it is not even clear if minimizers satisfy the Euler–Lagrange system
In fact, apart from some very special cases the usual methods for estimating the Hausdorff dimension of
sets simply do not work.

In [8] we present a method that can overcome these difficulties and thereby answer the previous questi
ing thatpartial regularity in the sense of |Σu| = 0 is never optimal. Indeed, denoting by dimH(Σu) the Hausdorff
dimension ofΣu, we have the following:

Theorem 1.1. Let u ∈ W1,p(Ω,R
N) be a minimizer of the functional F under the assumptions (2). Then there

exists a positive number δ ≡ δ(n,N,p,L/ν) > 0 such that

dimH(Σu) � n − min{α, δ}. (4)

The numberδ is determined by use of Gehring’s Lemma, which in a standard way yields higher integrab
u is a minimizer ofF , thenDu ∈ L

q

loc(Ω,R
nN) for some exponentq ≡ q(n,N,p,L/ν) > p. We haveδ := q −p,

and henceδ is non-increasing as a function of the growth-ellipticity ratioL/ν, and

lim
L/ν→∞δ = 0. (5)

It is therefore possible to give estimates forδ in terms of the data(n,N,p,L/ν): this requires a careful bookkeepin
of the constants in the proof of Gehring’s lemma, a strategy that has been followed when studying, for in
quasiconformal mappings in higher dimensions [2].

Let us briefly discuss some technical features of the problem. Recall that for minimizers of the basic integra
functional∫

Ω

f
(
Dv(x)

)
dx,

wheref = f (z) satisfies (2), a classical result states that

dimH(Σu) � n − 2, n � 3. (6)

The singular set is empty in the casen = 2. The derivation of the bound (6) has two ingredients. First, the minim
u satisfies the Euler–Lagrange system: divfz(Du) = 0. Second, sincef is C2 and strongly convex the differenc
quotient method can be used to show that solutions are locally inW2,2. From this the bound (6) readily follow
(see [7]).

In the general context of functionals of the type (1) none of these ingredients is available. First, as re
above, the functional is not differentiable in general, and consequently the Euler–Lagrange system migh
available. This is a serious obstruction, since all the techniques developed up to now strongly rely on th
as mentioned above, even when the Euler–Lagrange system is available, and even assumingthe smoothness of F ,
conditions (2) do not ensure that the system, divFz(x,u,Du) = Fy(x,u,Du), can be used to get dimension
estimates for the singular set. Indeed, in the favorable case, whereF is smooth andα = 1, the right-hand side
exhibits critical growth|Fy(x,u,Du)| � L̃(|Du|p + 1), so the singular set estimates based on the Euler–Lagr
system are possible only for bounded solutions satisfying an unavoidable smallness assumption on theL∞ norm
of the type 2̃L‖u‖L∞ < ν, [10]. In contrast, minimizers of general functionals of the type in (1), may be
unbounded [13]. In fact, as in the case of harmonic maps [12], minimality must be used directly to obtain th
singular set estimates, whereas an attempt based solely on the Euler–Lagrange system appears hopeles
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Our proof avoids the direct use of the Euler–Lagrange system and is based on a new, variational a
using directly the minimality ofu. As is clear from the above discussion, the main difficulty in the present se
is caused by the explicit dependence of the energy densityF = F(x, y, z) on the variabley, even whenα = 1 and
F is smooth. Indeed, the mapu(x) in the energy densityF(x,u(x),Du(x)) acts as a “measurable coefficien
since for each fixedz ∈ R

nN the function,x �→ F(x,u(x), z), is a-priori only little more than measurable. This
the main reason for the appearance ofδ in the estimate (4). Though we have no proof or counter-example, it s
likely that, in general, one cannot go much beyond (4).

In case there is no interaction between the variablev and the gradient variableDv we can obtain a bette
estimate. Such is the case for integrals of the type

F1[v] :=
∫
Ω

(
f

(
x,Dv(x)

) + g
(
x, v(x)

))
dx, (7)

wheref satisfies (2), suitably rewritten for the case withouty dependence, whileg is only supposed to be bounde
and, satisfy

x �→ g(x, y) is measurable and
∣∣g(x, y1) − g(x, y2)

∣∣ � L̃min
{
1, |y1 − y2|α

}
,

for anyx ∈ Ω andy1, y2 ∈ R
N . For minimizersu of F1 we can improve the bound (4) to

dimH(Σu) � n − α. (8)

It is interesting to compare this result to previous results valid for solutions of non-linear elliptic systems [9,10]
A functional of the type∫

Ω

f
(
x,Dv(x)

)
dx

with f as above, admits an Euler–Lagrange system of the form: divA(x,Du) = 0, where, of course,A(x,Du) ≡
fz(x,Du). Under the above hypotheses withp = 2 it can be shown that the vector fieldA satisfies the Hölde
continuity condition∣∣A(x1, z) − A(x2, z)

∣∣ � L|x1 − x2|β
(
1+ |z|) with β := α/2.

Consequently, half of the Hölder continuity exponent is lost when passing fromf (x, z) to the partial gradien
vector fieldfz(x, z), and it is known that this result is sharp. The result in [9] is therefore applicable to the E
Lagrange system, yielding the estimate dimH(Σu) � n − 2β = n − α, which is in exact accordance with (8). W
also observe that for solutions to more general systems of the type divA(x,u,Du) = B(x,u,Du), the estimate
in [10] resembles (4), namely dimH(Σu) � n − δ, whereδ depends on the eigenvalues of the matrixAz. Again
this is caused by the explicit dependence ofA on u. Summarizing, when there is no Euler–Lagrange system
techniques in [9,10] cannot be applied, however, when the Euler–Lagrange system exists and can be
resulting bounds on the Hausdorff dimension are in accordance with the ones in (4) and (8) (see also (12), belo

An intermediate result, between (4) and (8), is also available. It is obtained when the functiong above depend
onDv, but has a lower order of growth. Examples are functionals that allow a splitting such as

F2[v] :=
∫
Ω

(
f

(
x,Dv(x)

) + g
(
x, v(x),Dv(x)

))
dx, (9)

wheref is as above (but independent ofy), g is C2, convex with respect to the gradient variable and satisfies

0� g(x, y, z) � L̃
(|z|γ + 1

)
(10)

and ∣∣g(x1, y1, z) − g(x2, y2, z)
∣∣ � L̃ω

(|x1 − x2| + |y1 − y2|
)(|z|γ + 1

)
, 0 � γ � p. (11)
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A typical model functional is

v �→
∫
Ω

(
f

(
x,Dv(x)

) + a
(
x, v(x)

)(
1+ ∣∣Dv(x)

∣∣2)γ /2)dx,

wherea :Ω ×R
n → R

+ is a bounded,α-Hölder continuous function. In these functionals, the presence ofu affects
the leading termDu in a less severe way, sinceg grows slower thanf in the gradient variable. For minimizersu
of F2 we obtain

dimH(Σu) � n − min{α,p − γ + δ}, (12)

whereδ > 0 is as in the Theorem 1.1, and thus especially depends on the growth-ellipticity ratioL/ν. The previous
bound is intermediate between (4) and (8): (12) reduces to (4) forγ = p and to (8) forγ = 0. In particular, when
assumingγ � p − 1 we always get the bound in (8).

Finally, we can also prove that under the low dimension assumption

n � p + 2 (13)

the estimate in (8) is valid for general functionals of the type (1) under the assumptions (2). This is because in
case one can adapt arguments of Campanato (see [3]) to show that minimizers are Hölder continuous on

2. Ideas of the proof

For the sake of clarity, we confine the description to the casep = 2; we shall only briefly indicate the mai
points. The details will appear in [8]. The starting point for estimating the Hausdorff dimension of the singu
Σu is the well-known inclusion

Σu ⊂
{
x ∈ Ω : lim inf

ρ↘0
−
∫

B(x,ρ)

∣∣Du(y) − (Du)x,ρ

∣∣2 dy > 0 or lim sup
ρ↘0

(|ux,ρ| + ∣∣(Du)x,ρ

∣∣) = ∞
}
.

This inclusion is standard and is a consequence of all partial regularity proofs [7]. Hence, essentially it su
estimate the Hausdorff dimension of the set of non-L2-Lebesgue points ofDu. In turn this is achieved by showin
that the gradient of a minimizer belongs to a fractional Sobolev–Slobodetskij space

Du ∈ W
θ,2
loc (Ω,R

nN) (14)

for someθ ≡ θ(n,N,L/ν) > 0, depending on the assumptions we are working with, and then following ge
arguments for the theory of such spaces. Proving (14) isthe main part of the proof. We accomplish it in two ste
the first consists of a careful comparison and covering argument that allows us to deal with fractional dif
quotients using directly the minimality ofu. For the implementation of this argument it is crucial thatDu is
locally integrable to a higher powerq > p. Such local higher integrability follows from Gehring’s Lemma. T
first step therefore produces a smallθ0 such thatDu ∈ W

θ0,2
loc (Ω,R

nN). The second step exploits the existence
this additional fractional derivative: it is the starting point for an iteration argument that is based on Cacciopp
and Poincaré type inequalities in the setting of fractional Sobolev–Slobodetskij spaces. This iteration improves the
degree of (fractional) differentiability ofDu and finally leads to the quantities in the bounds (4), (8) and (12), thu
concluding the proof. The proof of the estimate (8) under the low dimensional assumption (13) is more in
and combines the above ideas with additional regularity results.
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