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Abstract

We provide bounds for the Hausdorff dimension of the singular set of minima of functionals of thgféyE(ac, v, Dv),
whereF is only Holder continuous with respect to the variablesv). To cite thisarticle: J. Kristensen, G. Mingione, C. R.
Acad. Sci. Paris, Ser. | 340 (2005).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Fonctionnelles non-différentiableet I’ ensembles singulier des minima. Nous bornons la dimension de Hausdorff de I'en-
semble singulier des minima de fonctionnelles du tfgeF (x, v, Dv) ol F n'est Holderienne que par rapport aux la variables

(x, v). Pour citer cet article: J. Kristensen, G. Mingione, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Soit £2 un domaine régulier d&”, n > 2. Dans cette note nous nous intéressons a la régularité partielle des
minima de fonctionnelles de la forme

Flv] = / F(x, v(x), Dv(x)) dx Q)
2

qui sont définies suwL7 (2, RY), N > 2, p > 1. Dans le cas ou la densité d’énergie= F(x, y, z) Vérifie (2)
(i.e., est Holderienne d’exposamtpar rapport aux variables, y) et estC? par rapport &) il est connu qu’un

minimumu de F est de classélt’g‘ en dehors un ferm&, C 2 de mesure de Lebesgue nulle [6,7]. L'estimation
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de la dimension de Hausdorff d&, est un probléme essentiel de la théorie de la régularité partielle des minima
de F ([4], page 117). Plus précisement la question est de savoir si la dimension de Hausdgyfésieinferieure

an. Nous démontrons gu'il existe une constante 0 qui ne dépend que dg, «, n, N et p telle que dim; (X)) <

n — min{a, 8} pour toutu € W7 (2, RY) minimum deF.

La difficulté principale de notre analyse vient de la non différentiabilité de la deAsfiér rapport ay qui
prévent I'existence de I'’équation d’Euler—Lagrange associEeNous développens une technique d’estimation de
la dimension de Hausdorff dB, qui n’utilise pas I'équation d’Euler—Lagnge associée a la fonctionnelle étudieé.
Cette nouvelle technique est basée sur des estimatiliptigees dans les espace de Sobolev fractionnaires, un
nouveau principe de comparaison et lemme de Gehring.

1. Singular set estimates

Consider an integral functional of the type (1), where W17 (22, RY), 2 c R" is a bounded and open
domain,n, N > 2, p > 1 andF: 2 x RY x R*N — R. The regularity problem for minimizers of, i.e. maps
u e WLP(22,RN) such thatF[u] < F[v] forall v e u + W(}’f’(sz, RM), is classical in the Calculus of Variations.
The reader is referred to the recent monograph of Gidgfofr a comprehensive irdduction to the subject.

We require the following list of properties of the energy dengity

F(x,y,-)isC?,

vlz|? < F(x,y,2) < L(lz|” + 1),

(1412 P PP < (Fox, v, D0 ) S LA+ 12D P 722102,

|F(x1, y1,2) — F(x2, 2, 2)| < Lmin{1, |x1 — x2|% + |y1 — y2|*} (Iz]” + 1),

(2)

wherez, A € R"™, x,x1,x0 € 2 and y, y1, y2 € RV. Here we assume that the constants and exponents sat-
isfy p>1, 0<v < L <L anda € (0,1]. Note in particular that (2) means that the functiolix, y) —
F(x,y,2)/(z|? + 1), is Holder continuous with exponeat uniformly in z. The assumptions in (2) are standard
in the regularity theory for minima of integral functiona#s(see e.g. [4,7]).

In the scalar case N = 1, where the functionaF is defined on real valued functions, assumptions (2) allow
to prove full interior regularity: the gradiedx of a minimizeru € W17 (£2) is locally Hélder continuous 2
(and in fact is as regular a8 is). This is false in thevectorial case n, N > 2, where celebrated counterexamples
[11,13] show that minimizers can be singular (e.g., Lipschitz, bu9t Instead, work has focused on proving
so-calledpartial regularity: there exists an open subse} C €2 such that: € Clﬁg(ﬁu, R¥) for someo > 0 and
|2\ £2,] =0 (see [5-7]). The set

X =82\ 24 Q)

is called the singular set of the minimizer

The main open problem in the theory concerns the size of the singular,sés$ partial regularity in the sense
that | X, | = 0 optimal ? In case the answer is negative, the problem is to give bounds for the Hausdorff dimension
of X,; see question (a), page 117 of [4].

There are no previous results about the Hausdorff dimension of singular sets of minima for general integral
functionals (1). The only such estimates in the literature concern minima of very special functionals, like certain
quadratic functionals and functionals of the type

vr—)/a(x,v(x))|Dv(x)|pdx
2

under suitable Holder continuity aldundedness assumptions on the functiof? x RN — R, see [1,5].



J. Kristensen, G. Mingione/ C. R. Acad. ci. Paris, Ser. | 340 (2005) 93-98 95

When the Holder continuity exponeatin (2) is strictly smaller than one, an obvious obstacle is the possible
nondifferentiability ofF = F(x, y, z) with respect tg. This causes the functionélin (1) to benon-differentiable,
and, crucially, the Euler—Lagrange system is not available. However, even fvieeemooth the hypotheses (2)
do not garantee that the Euler—Lagrange system.di, u, Du) = F\(x, u, Du) is well-behaved (whea < 1, no
growth condition forF, follows from (2) and it is not even clear if mimiizers satisfy the Euler—Lagrange system).
In fact, apart from some very special cases the usual methods for estimating the Hausdorff dimension of singular
sets simply do not work.

In [8] we present a method that can overcome these difficulties and thereby answer the previous question show
ing thatpartial regularity in the sense of | X,,| = 0 is never optimal. Indeed, denoting by dim(X,) the Hausdorff
dimension ofY,, we have the following:

Theorem 1.1. Let u € WL7 (2, RV) be a minimizer of the functional F under the assumptions (2). Then there
exists a positive number § =8(n, N, p, L/v) > 0 such that

dimy(X,) <n —min{a, 8}. 4)

The numbes is determined by use of Gehring’s Lemma, which in a standard way yields higher integrability: if
u is a minimizer of7, thenDu € L (2, R"") for some exponent= g(n, N, p, L/v) > p. We haves :=q — p,
and hencé is non-increasing as a functioftbie growth-ellipticity ratioL /v, and

lim §=0. 5
L/v—o00 ( )
Itis therefore possible to give estimatesdan terms of the daté:, N, p, L/v): this requires a careful bookkeeping
of the constants in the proof of Gehring’s lemma, a strategy that has been followed when studying, for instance,
guasiconformal mappings in higher dimensions [2].
Let us briefly discuss some technical features of trabjam. Recall that for mininziers of the basic integral
functional

/ f(Dv(x)) dx,
2

where f = f(z) satisfies (2), a classical result states that
dimy(X,)<n—-2, n>=3 (6)

The singular set is empty in the case- 2. The derivation of the bound (6) has two ingredients. First, the minimizer
u satisfies the Euler—Lagrange system:fliDu) = 0. Second, sincg is C2 and strongly convex the difference-
quotient method can be used to show that solutions are locally%R. From this the bound (6) readily follows
(see [7]).

In the general context of functionals of the type (1) none of these ingredients is available. First, as remarked
above, the functional is not differentiable in general, and consequently the Euler—-Lagrange system might not be
available. This is a serious obstruction, since all the techniques developed up to now strongly rely on this. But,
as mentioned above, even when the Euler—Lagrange system is available, and even abstsmowhness of F,
conditions (2) do not ensure that the systemfdix, u, Du) = F,(x, u, Du), can be used to get dimensional
estimates for the singular set. Indeed, in the favorable case, whé&emooth andr = 1, the right-hand side
exhibits critical growth F, (x, u, Du)| < L(|Du|? + 1), so the singular set estimates based on the Euler—Lagrange
system are possible only for bounded solutions satisfying an unavoidable smallness assumptiatPomone
of the type Z|jul|z~ < v, [10]. In contrast, minimizers of general functionals of the type in (1), may be even
unbounded [13]. In fact, as in the case of harmonic maps, fb#jimality must be used directly to obtain the
singular set estimates, whereas an attempt based solely on the Euler—Lagrange system appears hopeless.
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Our proof avoids the direct use of the Euler-Lagrange system and is based on a new, variational argument
using directly the minimality ofi. As is clear from the above discussion, the main difficulty in the present setting
is caused by the explicit dependence of the energy deRsityF (x, y, z) on the variabley, even whenr = 1 and
F is smooth. Indeed, the magx) in the energy density (x, u(x), Du(x)) acts as a “measurable coefficient”,
since for each fixed € R™" the function,x — F(x, u(x), z), is a-priori only little more than measurable. This is
the main reason for the appearanceé of the estimate (4). Though we have no proof or counter-example, it seems
likely that, in general, one cannot go much beyond (4).

In case there is no interaction between the variabknd the gradient variabl®v we can obtain a better
estimate. Such is the case for integrals of the type

Fi[v] = /(f(x, Dv(x)) + g(x, v(x))) dx, @)
2
where f satisfies (2), suitably rewritten for the case withgutependence, whilg is only supposed to be bounded
and, satisfy
x+— g(x,y)is measurable and |g(x, y1) — g(x, y2)| <L min{l, [y1— y2|°‘},
for anyx € £2 andys, y2 € RY. For minimizers: of F1 we can improve the bound (4) to
dimy(Z,) <n—a. (8)

It is interesting to compare this result to previous teswualid for solutions of non-liear elliptic systems [9,10].
A functional of the type

/ f(x, Dv(x)) dx
2

with f as above, admits an Euler—Lagrange system of the formt (divDu) = 0, where, of courseA (x, Du) =
f-(x, Du). Under the above hypotheses wijth= 2 it can be shown that the vector field satisfies the Holder
continuity condition

|A(x1,2) = A2, 2)| < Llxi — x2l (14 1z])  with B := /2.

Consequently, half of the Holder continuity exponent is lost when passing froimz) to the partial gradient
vector field f; (x, z), and it is known that this result is sharp. The result in [9] is therefore applicable to the Euler—
Lagrange system, yielding the estimate gitx’,) <n — 28 = n — «, which is in exact accordance with (8). We
also observe that for solutions to more general systems of the tygéxdiv, Du) = B(x, u, Du), the estimate
in [10] resembles (4), namely dig(X,) < n — §, wheres depends on the eigenvalues of the mattix Again
this is caused by the explicit dependencedobn . Summarizing, when there is no Euler-Lagrange system the
techniques in [9,10] cannot be applied, however, when the Euler-Lagrange system exists and can be used, th
resulting bounds on the Hausdorff dimension are in acca@aiith the ones in (4) and (8) (see also (12), below).

An intermediate result, between (4) and (8), is also available. It is obtained when the funatiowe depends
on Dv, but has a lower order of growth. Examples are functionals that allow a splitting such as

Folv] := /(f(x, Dv(x)) + g(x, v(x), Dv(x))) dx, 9)
Q
where f is as above (but independentyf g is C2, convex with respect to the gradient variable and satisfies
0< g(x,y,2) <L(lzl” +1) (10)
and
|g(x1, y1,2) — g(x2, y2, )| < Loo(Ix1 — x2| + |y1 — y2|) (lzI” +1), O0<y <p. (11)
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A typical model functional is

V> /(f(x, Dv(x)) +a(x, v(x))(1+ |Dv(x)|2)y/2) dx,
Q

wherea: 2 x R" — R is a boundedy-Holder continuous function. In these functionals, the presengafiects
the leading ternDu in a less severe way, singegrows slower thary in the gradient variable. For minimizens
of F»> we obtain

dimy(X,) <n—minfa, p — y + 8}, (12)

wheres > 0 is as in the Theorem 1.1, and thus especially depends on the growth-ellipticity fatidhe previous
bound is intermediate between (4) and (8): (12) reduces to (4) ferp and to (8) fory = 0. In particular, when
assumingy < p — 1 we always get the bound in (8).

Finally, we can also prove that under the low dimension assumption

n<p+2 (13)

the estimate in (8) is valid for general functionals o thipe (1) under the assumptions (2). This is because in this
case one can adapt arguments of Campanato (see [3]) to show that minimizers are Holder continuous on large set

2. ldeas of the proof

For the sake of clarity, we confine the description to the qase2; we shall only briefly indicate the main
points. The details will appear in [8]. The starting point for estimating the Hausdorff dimension of the singular set
X, is the well-known inclusion

X, C {x e Iim\i‘gf ][ | Du(y) — (Du)x,p|2dy > 0 or limsug|ux |+ |(Du)x,p|) = oo}.
L oN\O
B(x,p)

This inclusion is standard and is a consequence of all partial regularity proofs [7]. Hence, essentially it suffices to
estimate the Hausdorff dimension of the set of Hofakebesgue points abu. In turn this is achieved by showing
that the gradient of a minimizer belongs to a fractional Sobolev—Slobodetskij space

Du e Wi2(2,R™) (14)

for somed =6(n, N, L/v) > 0, depending on the assumptions we are working with, and then following general
arguments for the theory of such spaces. Proving (1#eisnain part of the proof. We accomplish it in two steps:

the first consists of a careful comparison and covering argument that allows us to deal with fractional difference
quotients using directly the minimality of. For the implementation of this argument it is crucial thai is

locally integrable to a higher power> p. Such local higher integrability follows from Gehring’s Lemma. The
first step therefore produces a smllsuch thatDu € Wlffc’z(.Q, R"V). The second step exploits the existence of
this additional fractional derivaté: it is the starting point for an itetian argument that is based on Caccioppoli

and Poincaré type inequalities in the setting of fractiomdd@ev—Slobodetskij spaceshi§ iteration improves the
degree of (fractional) differentiability abu and finally leads to the quantities ihe bounds (4), (8) and (12), thus
concluding the proof. The proof of the estimate (8) under the low dimensional assumption (13) is more involved
and combines the above ideas with additional regularity results.
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