Tail of the stationary solution of the stochastic equation $Y_{n+1}=a_{n} Y_{n}+b_{n}$ with Markovian coefficients

Benoîte de Saporta

IRMAR, université de Rennes I, campus de Beaulieu, 35042 Rennes cedex, France
Received 8 January 2004; accepted 3 November 2004
Available online 19 December 2004
Presented by Marc Yor

Abstract

In this Note, we deal with the real stochastic difference equation $Y_{n+1}=a_{n} Y_{n}+b_{n}, n \in \mathbb{Z}$, where the sequence (a_{n}) is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of its stationary solution exhibits power law behavior. To cite this article: B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 340 (2005). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Queue de la solution stationnaire de l'équation $\boldsymbol{Y}_{\boldsymbol{n}+\boldsymbol{1}}=\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{Y}_{\boldsymbol{n}}+\boldsymbol{b}_{\boldsymbol{n}}$ à coefficients markoviens. On étudie la queue de la solution stationnaire de l'équation $Y_{n+1}=a_{n} Y_{n}+b_{n}, n \in \mathbb{Z}$, où $\left(a_{n}\right)$ est une chaîne de Markov à espace d'états fini. Par des méthodes de renouvellement, on donne une caractérisation détaillée du cas où la queue est polynômiale. Pour citer cet article : B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We study the following stochastic difference equation:

$$
\begin{equation*}
Y_{n+1}=a_{n} Y_{n}+b_{n}, \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left(a_{n}\right)$ is a real, finite state space Markov chain, and $\left(b_{n}\right)$ is a sequence of real i.i.d. random variables. Random Equations of this type have many applications in stochastic modeling and statistics. Most of previously studied cases deal with i.i.d. coefficients $\left(a_{n}\right)$: see [6,7,9] and [3]. For more recent work, see also [8]. Here we study the

[^0]Markovian case. In statistical literature, it is called a Markov-switching auto-regression, see [5] for interesting applications in econometrics. Such stochastic recursions are also a basic tool in queuing theory, see [1].

2. Main theorems

Assume that $\left(a_{n}, b_{n}\right)$ is stationary and ergodic, and that we have:

$$
\begin{equation*}
\mathbb{E} \log \left|a_{0}\right|<0, \quad \mathbb{E} \log ^{+}\left|b_{0}\right|<\infty \tag{2}
\end{equation*}
$$

Then it is proved in [2] that Eq. (1) has a unique stationary solution $\left(Y_{n}\right)$, where

$$
Y_{n}=\sum_{k=0}^{\infty} a_{n-1} a_{n-2} \cdots a_{n-k} b_{n-1-k}, \quad n \in \mathbb{Z}
$$

To deal with the tail of Y_{1}, we investigate the asymptotic behavior of $\mathbb{P}\left(x Y_{1}>t\right)$, when t tends to infinity, and where $x \in\{-1,1\}$. We give two theorems, depending on the a_{n} being positive or not.

Theorem 2.1. Let $\left(a_{n}\right)$ be an irreducible, aperiodic, stationary Markov chain, with state space $E=\left\{e_{1}, \ldots, e_{p}\right\} \subset$ \mathbb{R}_{+}^{*}, transition matrix $P=\left(p_{i j}\right)$ and stationary law v. Let $\left(b_{n}\right)$ be a sequence of non-zero real i.i.d. random variables, and independent of the sequence $\left(a_{n}\right)$. If the following conditions are satisfied:

- there is $a \lambda>0$ so that the matrix $P_{\lambda}=\operatorname{diag}\left(e_{i}^{\lambda}\right) P^{\prime}$ has spectral radius 1 (where P^{\prime} denotes the transpose of P),
- the $\log e_{i}$ are not integral multiples of a same number,
- $\mathbb{E}\left|b_{0}\right|^{\lambda}<\infty$,
then we have for $x \in\{-1,1\}$

$$
t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right) \underset{t \rightarrow \infty}{ } L(x)
$$

where $L(1)+L(-1)$ is positive. If $b_{0} \geqslant 0$, then $L(-1)=0$, and $L(1)>0$. If $b_{0} \leqslant 0$, then $L(1)=0$, and $L(-1)>0$.

Theorem 2.2. Let (a_{n}) be an irreducible, aperiodic, stationary Markov chain, with state space $E=\left\{e_{1}, \ldots, e_{p}\right\} \subset$ \mathbb{R}^{*} such that $\left\{e_{1}, \ldots, e_{l}\right\} \subset \mathbb{R}_{+}$and $\left\{e_{l+1}, \ldots, e_{p}\right\} \subset \mathbb{R}_{-}$for a $0 \leqslant l \leqslant p-1$, transition matrix $P=\left(p_{i j}\right)$ and stationary law v. Let $\left(b_{n}\right)$ be a sequence of non-zero real i.i.d. random variables, and independent of the sequence $\left(a_{n}\right)$. If the following conditions are satisfied:

- there is $a \lambda>0$ so that the matrix $P_{\lambda}=\operatorname{diag}\left(\left|e_{i}\right|^{\lambda}\right) P^{\prime}$ has spectral radius 1 ,
- the $\log \left|e_{i}\right|$ are not integral multiples of a same number,
- $\mathbb{E}\left|b_{0}\right|^{\lambda}<\infty$,
then we have, for $x \in\{-1,1\}$,

$$
t^{\lambda} \mathbb{P}\left(x Y_{1}>t\right) \xrightarrow[t \rightarrow \infty]{ } L(x)
$$

where $L(1)+L(-1)$ is positive. If in addition P^{\prime} is l-irreducible (see definition below) then $L(1)=L(-1)>0$.
The last two hypotheses of these theorems are the same as in the i.i.d. case. In particular, the second one ascertains that the distribution of Y_{1} is non-lattice, and it is equivalent to requiring that the subgroup generated
by the $\log e_{i}$ be dense in \mathbb{R}. On the contrary, the first assumption comes from the Markovian dependence considered here. Indeed, we can prove that the spectral radius $\rho\left(P_{\lambda}\right)$ can be computed from the formula $\rho\left(P_{\lambda}\right)=$ $\lim \left(\mathbb{E}\left|a_{0} \cdots a_{1-n}\right|^{\lambda}\right)^{1 / n}$. Therefore this assumption is a suitable substitute for the classical relation $\mathbb{E}\left|a_{0}\right|^{\lambda}=1$ assumed in the i.i.d. case.

Note that the assumption of independence between the two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ can be avoided. Let \mathcal{F}_{n} be the σ-field generated by a_{0}, \ldots, a_{-n} and b_{0}, \ldots, b_{-n}. Then $\left(b_{n}\right)$ is only required to be a sequence of random variables such that $\left(a_{n}, b_{n}\right)$ be a stationary process, and b_{-n} be independent of \mathcal{F}_{n-1}. We also need one more assumption, also assumed in the i.i.d. case: for all $1 \leqslant i \leqslant p, \mathbb{P}\left(b_{0}+a_{0} x=x \mid a_{0}=e_{i}\right)<1$.

The mapping $\lambda \mapsto \log \rho\left(P_{\lambda}\right)$ being convex, its right-hand derivative in 0 being negative and as we have $\rho\left(P_{0}\right)=$ $\rho(P)=1$, only two cases may occur.

- Either for all $\lambda>0, \rho\left(P_{\lambda}\right)<1$, in which case we can prove that $\mathbb{E}\left|Y_{1}\right|^{\lambda}<\infty$ for all λ, provided $\mathbb{E}\left|b_{0}\right|^{\lambda}<\infty$, and therefore $\mathbb{P}\left(\left|Y_{1}\right|>t\right)=\mathrm{o}\left(t^{-\lambda}\right)$ for all λ.
- Or there is a unique $\lambda>0$ so that $\rho\left(P_{\lambda}\right)=1$, this is the case we study here.

3. Sketch of the proof of Theorem 2.1

Similar theorems have already been proved in the i.i.d. multidimensional case: a_{n} are matrices and Y_{n} and b_{n} vectors. Renewal theory is used in [6] to prove a similar theorem when the a_{n} either have a density or are nonnegative. Kesten's results were extended in [9] to all i.i.d. random matrices satisfying similar assumptions as in our theorems. Finally in [3] a new specific implicit renewal theorem is proved and the same results as Kesten in the i.i.d. one-dimensional case are derived.

Here we follow the same steps as [9] and [3]. Our problem leads to a system of renewal equations of size p, instead of a single renewal equation. We use a new renewal theorem given in [10] to get an asymptotic equivalent of $\mathbb{P}\left(x Y_{1}>t\right)$, of the form $L(x) t^{-\lambda}$. However the constants $L(x)$ thus obtained are only non-negative.

The next step is to prove that $L(1)+L(-1)>0$. To do so, we extend the method given in [3] and [4]. First we prove the following lower bound:

$$
\mathbb{P}\left(\left|Y_{1}\right|>t\right) \geqslant C \mathbb{P}\left(\sup _{n}\left|a_{0} \cdots a_{1-n}\right|>\frac{2 t}{\varepsilon}\right)
$$

for a positive ε and a corresponding positive constant C. And then we use a ladder height method, and again renewal theory to derive an accurate estimate of the right-hand side probability.

4. Sketch of the proof of Theorem 2.2

Now the sign of the products $a_{0} \cdots a_{-n}$ is random. To be able to use the results of the positive case, we include this sign as a new dimension, and we derive a system of renewal equations of size $2 p$. Unfortunately, it is not necessarily irreducible, this is why we introduce a new definition.

Definition 4.1. Let $A=\left(a_{i j}\right)_{i \leqslant i, j \leqslant p}$ be a positive matrix, and $1 \leqslant l \leqslant p-1$ an integer. A is l-reducible if there is (I, J) a non-trivial partition of $\{1, \ldots, p\}$ such that:

- For all $1 \leqslant i \leqslant l$, if $i \in I$ then $a_{i j}=0 \forall j \in J$, if $i \in J$ then $a_{i j}=0 \forall j \in I$.
- For all $l+1 \leqslant i \leqslant p$, if $i \in I$ then $a_{i j}=0 \forall j \in I$, if $i \in J$ then $a_{i j}=0 \forall j \in J$.

If A is not l-reducible, we say that A is l-irreducible.

If the matrix of our system is l-irreducible, then the proof runs the same as in the positive case, and in addition we know that both limits $L(1)$ and $L(-1)$ are equal, therefore they are both positive. If the matrix is l-reducible, the system splits into two independent systems of size p, and for each of them the proof is the same as in the positive case. This time $L(1)$ and $L(-1)$ may be different.

References

[1] S. Asmussen, Applied Probability and Queues, Wiley, Chichester, 1987.
[2] A. Brandt, The stochastic equation $Y_{n+1}=A_{n} Y_{n}+B_{n}$ with stationary coefficients, Adv. Appl. Probab. 18 (1986) 211-220.
[3] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991) 26-166.
[4] A.K. Grincevičius, Products of random affine transformations, Lithuanian Math. J. 20 (1980) 279-282.
[5] J.D. Hamilton, Estimation, inference and forecasting of time series subject to change in regime, in: G. Maddala, C.R. Rao, D.H. Vinod (Eds.), in: Handbook of Statistics, vol. 11, 1993, pp. 230-260.
[6] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973) 207-248.
[7] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probab. 2 (1974) 355-386.
[8] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, preprint, 2002.
[9] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983.
[10] B. de Saporta, Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincare Probab. Statist. 39 (2003) 823-838.

[^0]: E-mail address: Benoite.de-Saporta@math.univ-nantes.fr (B. de Saporta).
 1631-073X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2004.11.018

