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Abstract

In this Note, we deal with the real stochastic difference equatjor = a, Y, + b, n € Z, where the sequende;,) is a
finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of
its stationary solution exhibits power law behavitw.citethisarticle: B. de Saporta, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Queue de la solution stationnaire de I'équationY, 41 = a,Y, + b, a coefficients markoviens.On étudie la queue de
la solution stationnaire de I'équatidfy 1 = a, Y, + bu, n € Z, oul (a,) est une chaine de Markov a espace d’états fini. Par
des méthodes de renouvellement,domne une caractérisation détaillée chs ou la queue est polynémiakour citer cet
article: B. de Saporta, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We study the following stochastic difference equation:
Yos1=apYy +by, nez, 1)

where(a,) is areal, finite state space Markov chain, &hg) is a sequence of real i.i.d. random variables. Random
Equations of this type have many applications in stetihanodeling and statistics. Most of previously studied
cases deal with i.i.d. coefficients,,): see [6,7,9] and [3]. For more recent work, see also [8]. Here we study the
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Markovian case. In statistical literature, it is called a Markov-switching auto-regression, see [5] for interesting
applications in econometrics. Such stochastic recursions are also a basic tool in queuing theory, see [1].

2. Main theorems

Assume thata,, b,) is stationary and ergodic, and that we have:
Elog|ag| <0, Elog™ |bg| < co. 2)
Then it is proved in [2] that Eq. (1) has a unique stationary solutiGn, where

00
Y, = Zan—lan—Z clp_kbp—1-k, nez.
k=0

To deal with the tail ofY;, we investigate the asymptotic behaviorRfcY; > ), whent tends to infinity, and
wherex € {—1, 1}. We give two theorems, depending on thebeing positive or not.

Theorem 2.1.Let(a,) be an irreducible, aperiodic, stationary Markov chain, with state sp@iee{e, ..., e,} C
R?% , transition matrix P = (p;;) and stationary lawv. Let (b,) be a sequence of non-zero real i.i.d. random
variables, and independent of the seque@gg. If the following conditions are satisfied

e there is ar > 0 so that the matrixP, = diag{e;‘)P’ has spectral radiud (where P’ denotes the transpose
of P),

e theloge; are not integral multiples of a same number,

o E|bo|* < o0,

then we have fox € {—1, 1}

*"P(xY1 > 1) —> L(x),
—>00

whereL (1) + L(—1) is positive. Ifbg > 0, thenL(—1) = 0,andL(1) > 0. If bp < 0,thenL(1) = 0,andL(-1) > 0.
Theorem 2.2.Let(a,) be anirreducible, aperiodic, stationary Markov chain, with state spgee{es, ..., ¢e,} C
R* such that{e,..., ¢} CRy and{e;41,...,¢,} CR_fora0<! < p — 1, transition matrix P = (p;;) and

stationary lawv. Let (b,) be a sequence of non-zero real i.i.d. random variables, and independent of the se-
quence(a,). If the following conditions are satisfied

e there is a) > 0 so that the matrixP;, = diag(|e;|*) P’ has spectral radiug,
o thelog|e;| are not integral multiples of a same number,
o E|bo|* < o0,

then we have, far € {—1, 1},
P(xY1> 1) —> L(x),
— 00

whereL (1) + L(—1) is positive. If in additionP’ is I-irreducible (see definition belowthenL (1) = L(-1) > 0.

The last two hypotheses of these theorems are the same as in the i.i.d. case. In particular, the second one a
certains that the distribution df1 is non-lattice, and it is equivalent toqeiring that the subgroup generated
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by the loge; be dense ifR. On the contrary, the first assumption comes from the Markovian dependence con-
sidered here. Indeed, we can prove that the spectral radiBs can be computed from the formulg P,) =
lim(Elag- - -a1—,|*)Y". Therefore this assumption is a suitable substitute for the classical reljtight = 1 as-
sumed in the i.i.d. case.

Note that the assumption of independence between the two sequepresd (b,) can be avoided. Lef,
be theo -field generated by, ...,a—, andby, ..., b_,. Then(b,) is only required to be a sequence of random
variables such thata,, b,) be a stationary process, ahd,, be independent af,,_1. We also need one more
assumption, also assumed in the i.i.d. case: for @li}< p, P(bo+ aox =x | ag=¢;) < 1.

The mapping. — log p(P,) being convex, its right-hand derivative in 0 being negative and as wed(d@@ =
o(P) =1, only two cases may occur.

— Either for allx > 0, p(P;) < 1, in which case we can prove tHaty;|* < oo for all A, providedE|bg|* < oo,
and therefor@(|Y1| > 1) = o(t ) for all A.
— Orthere is a uniqug > 0 so thato(P;) = 1, this is the case we study here.

3. Sketch of the proof of Theorem 2.1

Similar theorems have already been proved in the i.i.d. multidimensional casee matrices and;, andb,
vectors. Renewal theory is used in [6] to prove a similar theorem whea,tleé¢ther have a density or are non-
negative. Kesten's results were extended in [9] to all i.i.d. random matrices satisfying similar assumptions as in our
theorems. Finally in [3] a new specific implicit renewal theorem is proved and the same results as Kesten in the
i.i.d. one-dimensional case are derived.

Here we follow the same steps as [9] and [3]. Our problem leads to a system of renewal equationg of size
instead of a single renewal equation. We use a new renewal theorem given in [10] to get an asymptotic equivalent
of P(xY1 > t), of the formL (x)r~*. However the constants(x) thus obtained are only non-negative.

The next step is to prove that1l) + L(—1) > 0. To do so, we extend the method given in [3] and [4]. First we
prove the following lower bound:

2t
P(|Y1l>1)>C ]P’<Sup|a0---a1—nl > —>,

n &
for a positives and a corresponding positive const@ht And then we use a ladder height method, and again
renewal theory to derive an accurate estimate of the right-hand side probability.
4. Sketch of the proof of Theorem 2.2

Now the sign of the products - - -a_, is random. To be able to use the results of the positive case, we include

this sign as a new dimension, and we derive a system of renewal equations op sidaf@rtunately, it is not

necessarily irreducible, this iwhy we introduce a new definition.

Definition 4.1.Let A = (a;;)i<i, j<p b€ a positive matrix, and€{ / < p — 1 an integerA is [-reducibleif there is
(I, J) a non-trivial partition of{1, ..., p} such that:

e Forall1<i </, ifi € I thena;; =0Vj e J,if i € J thena;; =0V, e I.
o Foralll+1<i< p,ifi eIthena; =0Vj e ,if i € J thena;; =0V € J.

If A is notl-reducible, we say that is /-irreducible.
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If the matrix of our system ig-irreducible, then the proof runs the same as in the positive case, and in addition
we know that both limitd.(1) and L(—1) are equal, therefore they are both positive. If the matrixrisducible,
the system splits into two independent systems of gizand for each of them the proof is the same as in the
positive case. This timé (1) andL(—1) may be different.
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