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Abstract

In this Note, we deal with the real stochastic difference equationYn+1 = anYn + bn, n ∈ Z, where the sequence(an) is a
finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where
its stationary solution exhibits power law behavior.To cite this article: B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Queue de la solution stationnaire de l’équationYn+1 = anYn + bn à coefficients markoviens.On étudie la queue d
la solution stationnaire de l’équationYn+1 = anYn + bn, n ∈ Z, où (an) est une chaîne de Markov à espace d’états fini.
des méthodes de renouvellement, ondonne une caractérisation détaillée du cas où la queue est polynômiale.Pour citer cet
article : B. de Saporta, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We study the following stochastic difference equation:

Yn+1 = anYn + bn, n ∈ Z, (1)

where(an) is a real, finite state space Markov chain, and(bn) is a sequence of real i.i.d. random variables. Rand
Equations of this type have many applications in stochastic modeling and statistics. Most of previously stud
cases deal with i.i.d. coefficients(an): see [6,7,9] and [3]. For more recent work, see also [8]. Here we stud
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Markovian case. In statistical literature, it is called a Markov-switching auto-regression, see [5] for inte
applications in econometrics. Such stochastic recursions are also a basic tool in queuing theory, see [1].

2. Main theorems

Assume that(an, bn) is stationary and ergodic, and that we have:

E log|a0| < 0, E log+ |b0| < ∞. (2)

Then it is proved in [2] that Eq. (1) has a unique stationary solution(Yn), where

Yn =
∞∑

k=0

an−1an−2 · · ·an−kbn−1−k, n ∈ Z.

To deal with the tail ofY1, we investigate the asymptotic behavior ofP(xY1 > t), whent tends to infinity, and
wherex ∈ {−1,1}. We give two theorems, depending on thean being positive or not.

Theorem 2.1.Let (an) be an irreducible, aperiodic, stationary Markov chain, with state spaceE = {e1, . . . , ep} ⊂
R

∗+, transition matrixP = (pij ) and stationary lawν. Let (bn) be a sequence of non-zero real i.i.d. rand
variables, and independent of the sequence(an). If the following conditions are satisfied:

• there is aλ > 0 so that the matrixPλ = diag(eλ
i )P ′ has spectral radius1 (whereP ′ denotes the transpos

of P ),
• the logei are not integral multiples of a same number,
• E|b0|λ < ∞,

then we have forx ∈ {−1,1}
tλP(xY1 > t)−−−−→

t→∞ L(x),

whereL(1)+L(−1) is positive. Ifb0 � 0, thenL(−1) = 0, andL(1) > 0. If b0 � 0, thenL(1) = 0, andL(−1) > 0.

Theorem 2.2.Let (an) be an irreducible, aperiodic, stationary Markov chain, with state spaceE = {e1, . . . , ep} ⊂
R

∗ such that{e1, . . . , el} ⊂ R+ and {el+1, . . . , ep} ⊂ R− for a 0 � l � p − 1, transition matrixP = (pij ) and
stationary lawν. Let (bn) be a sequence of non-zero real i.i.d. random variables, and independent of t
quence(an). If the following conditions are satisfied:

• there is aλ > 0 so that the matrixPλ = diag(|ei |λ)P ′ has spectral radius1,
• the log|ei | are not integral multiples of a same number,
• E|b0|λ < ∞,

then we have, forx ∈ {−1,1},
tλP(xY1 > t)−−−−→

t→∞ L(x),

whereL(1) + L(−1) is positive. If in additionP ′ is l-irreducible(see definition below) thenL(1) = L(−1) > 0.

The last two hypotheses of these theorems are the same as in the i.i.d. case. In particular, the secon
certains that the distribution ofY1 is non-lattice, and it is equivalent to requiring that the subgroup generat
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by the logei be dense inR. On the contrary, the first assumption comes from the Markovian dependenc
sidered here. Indeed, we can prove that the spectral radiusρ(Pλ) can be computed from the formulaρ(Pλ) =
lim(E|a0 · · ·a1−n|λ)1/n. Therefore this assumption is a suitable substitute for the classical relationE|a0|λ = 1 as-
sumed in the i.i.d. case.

Note that the assumption of independence between the two sequences(an) and(bn) can be avoided. LetFn

be theσ -field generated bya0, . . . , a−n andb0, . . . , b−n. Then(bn) is only required to be a sequence of rand
variables such that(an, bn) be a stationary process, andb−n be independent ofFn−1. We also need one mor
assumption, also assumed in the i.i.d. case: for all 1� i � p, P(b0 + a0x = x | a0 = ei) < 1.

The mappingλ �→ logρ(Pλ) being convex, its right-hand derivative in 0 being negative and as we haveρ(P0) =
ρ(P ) = 1, only two cases may occur.

– Either for allλ > 0, ρ(Pλ) < 1, in which case we can prove thatE|Y1|λ < ∞ for all λ, providedE|b0|λ < ∞,
and thereforeP(|Y1| > t) = o(t−λ) for all λ.

– Or there is a uniqueλ > 0 so thatρ(Pλ) = 1, this is the case we study here.

3. Sketch of the proof of Theorem 2.1

Similar theorems have already been proved in the i.i.d. multidimensional case:an are matrices andYn andbn

vectors. Renewal theory is used in [6] to prove a similar theorem when thean either have a density or are no
negative. Kesten’s results were extended in [9] to all i.i.d. random matrices satisfying similar assumptions a
theorems. Finally in [3] a new specific implicit renewal theorem is proved and the same results as Keste
i.i.d. one-dimensional case are derived.

Here we follow the same steps as [9] and [3]. Our problem leads to a system of renewal equations op,
instead of a single renewal equation. We use a new renewal theorem given in [10] to get an asymptotic eq
of P(xY1 > t), of the formL(x)t−λ. However the constantsL(x) thus obtained are only non-negative.

The next step is to prove thatL(1) + L(−1) > 0. To do so, we extend the method given in [3] and [4]. First
prove the following lower bound:

P
(|Y1| > t

)
� C P

(
sup
n

|a0 · · ·a1−n| > 2t

ε

)
,

for a positiveε and a corresponding positive constantC. And then we use a ladder height method, and ag
renewal theory to derive an accurate estimate of the right-hand side probability.

4. Sketch of the proof of Theorem 2.2

Now the sign of the productsa0 · · ·a−n is random. To be able to use the results of the positive case, we in
this sign as a new dimension, and we derive a system of renewal equations of size 2p. Unfortunately, it is not
necessarily irreducible, this is why we introduce a new definition.

Definition 4.1.Let A = (aij )i�i,j�p be a positive matrix, and 1� l � p − 1 an integer.A is l-reducibleif there is
(I, J ) a non-trivial partition of{1, . . . , p} such that:

• For all 1� i � l, if i ∈ I thenaij = 0 ∀j ∈ J , if i ∈ J thenaij = 0 ∀j ∈ I .
• For all l + 1 � i � p, if i ∈ I thenaij = 0 ∀j ∈ I , if i ∈ J thenaij = 0 ∀j ∈ J .

If A is notl-reducible, we say thatA is l-irreducible.
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If the matrix of our system isl-irreducible, then the proof runs the same as in the positive case, and in ad
we know that both limitsL(1) andL(−1) are equal, therefore they are both positive. If the matrix isl-reducible,
the system splits into two independent systems of sizep, and for each of them the proof is the same as in
positive case. This timeL(1) andL(−1) may be different.
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