Abstract

We are concerned with strong \(L_2 \) solutions to a class of degenerate elliptic reaction diffusion systems associated with air quality models. To cite this article: W.E. Fitzgibbon et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Version française abrégée

On s’intéresse à l’existence de solutions fortes pour le système de réaction diffusion dégénéré suivant

\[
\frac{\partial \phi_i}{\partial t} = d \frac{\partial^2 \phi_i}{\partial z^2} + \nabla \cdot \omega \phi_i + f_i(\phi_1, \ldots, \phi_N) + g_i, \quad 1 \leq i \leq N,
\]

posé dans le domaine \(Q = \Omega \times [0, 1] \times [0, T] \); ici \(\Omega \) est un ouvert du plan de variables \((x, y)\), \([0, 1]\) représente la variable \(z\) verticale et \([0, T]\) l’intervalle de temps de l’étude. Le champ de vecteurs \(\omega = (\omega_1, \omega_2, \omega_3) \) est à divergence nulle dans \(\Omega \times [0, T] \). Ce système est issu d’un modèle de qualité de l’air, cf. [5,9].

E-mail addresses: fitz@math.uh.edu (W.E. Fitzgibbon), langlais@sm-u-bordeaux2.fr (M. Langlais), jmorgan@math.uh.edu (J.J. Morgan).

1631-073X/$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.10.012
On lui associe des conditions de flux sur les bords supérieur et inférieur de Q :

$$\partial \phi_i / \partial z + \nu_i \phi = e_i \quad \text{pour} \quad z = 0 \quad \text{et} \quad \partial \phi_i / \partial z = 0 \quad \text{pour} \quad z = 1,$$

des conditions initiales en $t = 0$,

$$\phi_i(x, y, z, 0) = \phi_{io}(x, y, z)$$

ainsi que des conditions aux limites sur la partie Σ_- de la frontière latérale de Q où le champ de vecteur $\tilde{\omega}$ est sortant.

On peut alors considérer ce système comme un système parabolique dégénéré ou mieux comme un système elliptique dégénéré. Sous l’hypothèse que le terme de réaction est conservatif et quasipositif on peut alors établir des estimations a priori dans L_∞ pour des solutions fortes dans L_2. L’existence résulte alors de techniques de perturbations pour des opérateurs maximaux monotones.

1. Introduction

The photochemical production and atmospheric dispersion of ozone and other pollutants is traditionally modeled by advection reaction diffusion systems. In many cases, cf. [5,9], one ignores the horizontal components of diffusion and assumes that diffusion transpires only vertically. This produces a degenerate reaction diffusion system of the form:

$$\partial \phi_i / \partial t = d \partial^2 \phi_i / \partial z^2 + \nabla \cdot (\omega \phi_i) + f_i(\phi_1, \ldots, \phi_N) + g_i$$

where $d > 0$ and $i = 1, \ldots, N$. The state variables, ϕ_i, represent concentration densities of the chemical species involved in the photochemical reaction. The relevant chemistry of the reaction process appears in the nonlinear functions, $f_i(\phi_1, \ldots, \phi_N)$, with the terms, g_i, representing elevated point sources. In practice these systems can be extraordinarily large with N possibly in the hundreds. The advection terms, $\tilde{\omega} = (\omega_1, \omega_2, \omega_3)$, describe transport from the velocity vector field of atmospheric current or wind. Typically one is interested in distribution of chemical concentrations over a specified geographic area. We therefore take as a modeling region a spatial cylinder of fixed height over a fixed two dimensional region, Ω. The bottom of the cylinder lies on the land surface of the earth and the top is the boundary of the troposphere. For our purposes we shall normalize the height to be one. Chemical species involved in the photochemical process are emitted upward from both anthropogenic and biogenic sources. Here set the upward flux equal minus a deposition flux,

$$\partial \phi_i / \partial z + \nu_i \phi = e_i \quad \text{for} \quad z = 0.$$ \hspace{1cm} (1)

We stipulate that e_i is a smooth, nonnegative function of space and time and $\nu_i > 0$ is a positive constant, cf. [5]. On the top of the cylinder we prescribe a simple no flux boundary condition,

$$\partial \phi_i / \partial z = 0, \quad \text{for} \quad z = 1.$$ \hspace{1cm} (2)

The boundary conditions for the cylinder use measured concentrations together with meteorological data for the wind to describe the chemical flux into the cylinder. The exact description of the boundary conditions is quite technical [1,3,6–8]; see below. Finally we need to provide initial conditions. We require the initial data,

$$\phi_i(x, y, z, 0) = \phi_{io}(x, y, z)$$ \hspace{1cm} (3)

for $i = 1$ to N is a smooth, nonnegative function of space. As previously mentioned the reaction vector field is complex and can be quite large possibly having hundreds of components. Typically, the reaction vector field satisfies a system of conservation laws and does not point out of the positive cone of \mathbb{R}^N. For present purpose we shall assume that:
We shall use existing theory of degenerate elliptic operators and scalar equations. For a complete development of this theory the reader is referred to [1,3,6,7] [8]. If our systems had no vertical diffusion they would be reactive diffusively degenerate elliptic systems with degeneracies in the horizontal spatial components and to obtain well-posedness via application of a time dependent variation of parameters or Duhamel formula. However, we shall find convenient to view it as a degenerate elliptic system with degeneracies in the space and time variables on the four dimensional vector field.

In this context we can find a natural way of using the advective flux define boundary provide boundary conditions for our system with degeneracies in the horizontal spatial components and to obtain well-posedness via application of a standard practice would be to be to view (4)-(3)-(2)-(1) as a degenerate parabolic (or ultra parabolic) evolution system with degeneracies in the space and time variables on the four dimensional vector field. We shall obtain a priori estimates by virtue of a weak maximum principle and our existence results will follow.

2. Details of the problem

We make note of the fact that our initial condition will be prescribed as in [6], this is it is either smooth or small enough. We set:

\[\partial \varphi_i / \partial t = d \partial^2 \varphi_i / \partial z^2 + \omega_1 \partial \varphi_i / \partial x + \omega_2 \partial \varphi_i / \partial y + \omega_3 \partial \varphi_i / \partial z + f_i(\varphi) + g_i. \]

Standard practice would be to be to view (4)-(3)-(2)-(1) as a degenerate parabolic (or ultra parabolic) evolution system with degeneracies in the horizontal spatial components and to obtain well-posedness via application of a time dependent variation of parameters or Duhamel formula. However, we shall find convenient to view it as a degenerate elliptic system with degeneracies in the space and time variables on the four dimensional vector field.

In this context we can find a natural way of using the advective flux define boundary provide boundary conditions for our system with degeneracies in the horizontal spatial components and to obtain well-posedness via application of a standard practice would be to be to view (4)-(3)-(2)-(1) as a degenerate parabolic (or ultra parabolic) evolution system with degeneracies in the space and time variables on the four dimensional vector field. We shall obtain a priori estimates by virtue of a weak maximum principle and our existence results will follow.

2. Details of the problem

We shall use existing theory of degenerate elliptic operators and scalar equations. For a complete development of this theory the reader is referred to [1,3,6,7] [8]. If our systems had no vertical diffusion they would be reactive diffusively degenerate elliptic systems with degeneracies in the horizontal spatial components and to obtain well-posedness via application of a time dependent variation of parameters or Duhamel formula. However, we shall find convenient to view it as a degenerate elliptic system with degeneracies in the space and time variables on the four dimensional vector field.

In this context we can find a natural way of using the advective flux define boundary provide boundary conditions for our system with degeneracies in the horizontal spatial components and to obtain well-posedness via application of a standard practice would be to be to view (4)-(3)-(2)-(1) as a degenerate parabolic (or ultra parabolic) evolution system with degeneracies in the space and time variables on the four dimensional vector field. We shall obtain a priori estimates by virtue of a weak maximum principle and our existence results will follow.
\[L_2^2(\partial Q_+) = \left\{ \phi : \partial Q_+ \to \mathbb{R} \mid \int_{\partial Q_-} l \phi^2 \, d\sigma < \infty \right\}. \]

Our boundary conditions assume the form,
\[\frac{\partial \phi}{\partial z} = 0, \quad \text{on} \quad (x, y, 1, t) \in \partial Q \quad (8) \]
and
\[\frac{\partial \phi}{\partial z} + \nu \phi = \epsilon, \quad \text{on} \quad (x, y, 0, t) \in \partial Q \quad (9) \]
and
\[\phi(x, y, z, 0) = \phi_0(x, y, z), \quad \text{for} \quad (x, y, z) \in \Omega \times (0, 1) \quad (10) \]
and
\[\phi(x, y, z, t) = \theta(x, y, z, t), \quad \text{for} \quad (x, y, z, t) \in \partial Q_-(\Omega \times [0, 1]). \quad (11) \]

We require that \(\phi_0 \in C^1(\Omega) \) with \(\phi_0(x, y, z) \geq 0 \) for \((x, y, z) \in \Omega \) and \(\theta_1 \in L_2(\Omega \times [0, 1]) \) with \(\theta_1(x, y, z, t) \geq 0 \) for \((x, y, z, t) \in \partial Q_- \). Finally we stipulate that the constants \(\nu_i > 0 \) and that \(e_i \in C^1(\Omega \times [0, T]) \) with \(e_i(x, y, t) \geq 0 \) on \(\Omega \times [0, T] \).

In this setting our system has the form,
\[-L(\phi_i) = -d \frac{\partial^2 \phi_i}{\partial z^2} - \omega_1 \frac{\partial \phi_i}{\partial x} - \omega_2 \frac{\partial \phi_i}{\partial y} - \omega_3 \frac{\partial \phi_i}{\partial z} + \frac{\partial \phi_i}{\partial t} = f_i(\phi) + g_i. \quad (12) \]

By a strong \(L_2 \) solution to the degenerate elliptic boundary value problem we mean \(\phi = \{ \phi_1, \ldots, \phi_N \} \) so that:
\[\phi_i \in L_\infty(\Omega), \quad \frac{\partial^2 \phi_i}{\partial z^2} \in L_2(\Omega), \]
\[\omega_1 \frac{\partial \phi_i}{\partial x} + \omega_2 \frac{\partial \phi_i}{\partial y} + \omega_3 \frac{\partial \phi_i}{\partial z} - \frac{\partial \phi_i}{\partial t} \in L_2(\Omega) \quad \text{with} \quad \phi_i \mid_{\partial Q_-} \in L_2(\partial Q_-) \]
so that each \(\phi_i \) satisfies the partial differential equation (12) and boundary conditions (8)–(11) in the a.e. sense (with respect to the appropriate measures). If \(\phi = \{ \phi_1, \ldots, \phi_N \} \) is a strong solution we can obtain an a priori \(L_\infty \) estimate for strong solutions. Our estimate is derived from a maximum principle for degenerate elliptic systems, cf. [6]. It is based on an estimate for \(\Phi = \sum_{i=1}^N \phi_i \) and it makes strong use of the quasipositivity and the balancing property of the reaction vector field. However, given this it is independent of a particular choice of reaction vector field, \(f = \{ f_i \}_{i=1}^N \). We have:

Theorem 2.1. If the foregoing hypotheses are satisfied and \(\phi = \{ \phi_1, \ldots, \phi_N \} \) is a strong \(L_2 \) solution to (4), (8)–(11) on \(Q \) with nonnegative components, then there exists an \(M = M(Q) \) so that
\[\max \{ \| \phi_i \|_{\infty, Q}, 1 \leq i \leq N \} \leq M. \]

We can also guarantee the existence of strong \(L_2 \) solutions. The proof uses the a priori estimates of the previous theorem and an abstract surjectivity result for perturbations of maximal monotone operators, cf. [2].

Theorem 2.2. If \(f = \{ f_i \}_{i=1}^N : \mathbb{R}^N \to \mathbb{R}^N \) is a balanced quasipositive vector field satisfying (i) and (ii) then there exists a strong \(L_2 \) solution to (4) with boundary conditions (8)–(11) on \(\partial Q \).

More details are found in [4].
Acknowledgements

Although the research described in this article has been funded wholly or in part by the United States Environmental Protection Agency through cooperative agreement CR829068-01 to the University of Houston, it has not been subjected to the Agency’s required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

This work was partially supported by NSF/CNRS Grant DMS 0089590.

References