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Abstract

Stochastic Calculus of variations deals with maps defined on the Wiener space, with finite dimensional range; w
context appears the notion ofnon-degenerate map, which corresponds roughly speaking to some kind of infinite dimensi
ellipticity; a non-degenerate map has a smooth law; by conditioning, it generates a continuous desintegration of the Wie
measure. Infinite dimensional Stochastic Analysis and particularly SPDE theory raise the natural question of what can
for maps with an infinite dimensional range; our approach to this problem emphasizes an intrinsic geometric aspect,
range by generatedσ -field and its associated foliation of the Wiener space.To cite this article: H. Airault et al., C. R. Acad.
Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Géométrie des foliations sur l’espace de Wiener et calcul des variations stochastiques. Le Calcul Stochastique de
variations considère classiquement des applications de l’espace de Wiener dans un espace de dimension finie ; dans ce co
s’inscrit la théorie desapplications non dégénéréespour lesquelles on peut établir la régularité des lois ainsi que l’existen
désintégrations continues. L’Analyse stochastique en dimension infinie et singulièrement la théorie des SPDE, pose l
naturelle de l’étude des applications de l’espace de Wiener dans un espace de dimension infinie. Nous approchons ce prob
de manière intrinsèque, privilégiant l’étude géomètrique des sous tribus à travers leurs foliations associées.Pour citer cet
article : H. Airault et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction: the theory of non-degenerate maps

We work on an abstract Wiener spaceX, µ is its canonical Wiener measure; denote byH the Cameron–Martin
space, that is the Hilbert space of constant vector fields for which the measureµ is quasi-invariant under translatio
by a vector ofH . Denote byDp

r (X) the Sobolev space of functions which arer-times differentiable relatively toH ,
with all their derivatives belonging toLp

µ. Let D∞−
r (X) := ⋂

p<∞ D
p
r (X). Consider a mapg : X �→ Rd, g =

(g1, . . . , gd). Assume thatgi ∈ D∞−
2 (X); then define thed × d covariance matrixγi,j = (∇gi |∇gj ); the mapg is

said to be non-degenerate, if almost surely the matrixγ∗,∗ is invertible and if, denotingγ ∗,∗ its inverse matrix, then
γ i,j ∈ L∞−

µ , an hypothesis which implies thatγ i,j ∈ D∞−
1 (X). The canonical lift toX of the coordinate vecto

field ∂
∂ξs

is defined as

Zs
can(ω) =

d∑
i=1

γ si(ω)(∇gi)(ω), we have (Z
j
can|Zs

can) = γ js. (1)

The hypothesis:g non-degenerate implies thatZs ∈ D∞−
1 (X;H) and Zs has a divergence relatively to th

Gaussian measureµ, let δµ(Zs) ∈ L∞−
µ (X).∫

δµ(Zs)ψ dµ = −
∫

(Zs |∇ψ)dµ for any differentiable functionψ onX. (2)

Denoteν = g∗(µ) the law ofg, g∗(µ)(A) = µ(g−1(A)). Then the divergence of∂
∂ξs

relative toν is the conditional
expectation of the divergence ofZs relatively toµ,

δν

(
∂

∂ξs

)
= Eg

(
δµ(Zs)

)
(3)

consequentlyδν(
∂

∂ξs
) ∈ L∞−

ν , andν has an Hölderian density relatively to the Lebesgue measure. More gen

we call a lift byg of ∂
∂ξs

, a vector fieldZs such that

Zs(hog) =
(

∂

∂ξs

h

)
og. (4)

It satisfies (4) if and only if(Zs |∇gs) = 1 and(Zs |∇gk) = 0 if k �= s. Moreover, there is a unique lift byg of ∂
∂ξs

,
in the space generated by(∇gj )j=1,...,d , this is given byZs

can.
Conditioning by a non-degenerate map preserves differentiability([5]; page 82). For any liftZs by g of ∂

∂ξs
, and

such that the divergenceδµ(Zs) exists, we have

∂

∂ξs
Eg(f ) − Eg(DZsf ) = Eg

(
δµ(Zs)f

) − Eg
(
δµ(Zs)

) × Eg(f ), ∀f ∈ D∞−
1 (X). (5)

With (3) and (5), divergences of lifts play a key role. An analytic expression of the divergence of the canon
has been given in coordinates in [5], page 71. In this Note, we give alternative geometric expressions fr
coordinates which could be used in the case ofσ -fields (see [3,4,6]).

2. Lifting and Lie derivatives

A vector field Z on X is calledbasic if Z ∈ D∞−
(X;H) and if DZgs = (Z|∇gs) is g-measurable for al

s ∈ [1, d]. Thus, ifZ is basic,(
Z(ω)|∇gs(ω)

) = zs

(
g(ω)

)
, s = 1, . . . , d. (6)
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A vector fieldZ on X is calledg-basically constant ifDZgs is constant for anys ∈ [1, d]. In particular, any lift
by g of a constant vector field isg-basically constant. Letφ ∈ Rd , then a lift byφ og of a constant vector field i
basic. If a basic vector fieldZ is in the normal space, then (compare with (1)),

Z(ω) =
∑

k

zk

(
g(ω)

)
Zk

can(ω). (7)

In the following, unless it is precised, for lift, we mean a lift byg. Let 
 = dg1 ∧ · · · ∧ dgd .

Proposition 2.1. The Lie derivative of
 relatively to any basically constant vector field vanishes.

Proof. We use the Cartan formulaLZ = i(Z) d+ di(Z), wherei(Z) denotes the interior product byZ. We have
LZ(dg) = d(DZg). As d
 = 0, the first term of Cartan formula disappears. We obtaini(Z)
 = (DZg1) × dg2 ∧
· · ·dgd + · · ·, expression which has a vanishing boundary.�
2.1. The duality

We denote byΩ the differential form of degree∞ which is the ‘volume form’ associated to the Gauss
measureµ. Let C be the differential form of degree∞ − d given byC = i(
)Ω , i.e.C ∧ 
 = Ω .

Proposition 2.2. The unnormalized conditional expectation is given byEg(f )(ξ) = ∫
g−1(ξ)

f × C.

Proof. Forf :X → R, the unnormalized conditional expectation is given by (see [1])

Eg[f ](α) =
∫

g−1(α)

f (ω)

√
det

(
γ ∗∗(ω)

)
da(ω), α ∈ Rd.

Denote|
 | = √
det((∇gs |∇gk)). The∞ − d Gaussian area da satisfies da ∧ 


|
 | = Ω . Thus da
|
 | ∧ 
 = Ω . As

da
|
 | corresponds to the conditional law, the proposition is proved.�
Theorem 2.3. LetZ be a basically constant vector field, then the Lie derivativeLZC = δµ(Z) × C.

Proof. δµ(Z) × Ω = LZ(Ω) = LZ(C) ∧ 
 + C ∧LZ
 = LZ(C) ∧ 
 . �
Remark 1. Theorem (2.3) reduces the derivative of a conditional expectation to a Skorokhod integral on the
space. With Proposition 2.2, it gives a geometrical proof of (5).

3. Canonical forms of a foliation: curvature and proximity

To avoid the difficulty of selecting versions of maps, we consider the case whereX is a finite dimensiona
Euclidean space with its canonical Gaussian measure; then by Sobolev embedding,D∞−

1 (X) is contained in the
set of continuous functions; we always take the continuous versions. Since the estimates that we obtai
dependent of the dimension ofX, they stay valid for the infinite dimensional case, that is the Wiener space.
g = (g1, g2, . . . , gd) :X → Rd be a non-degenerate map. OnX, we define the equivalence relationω1T ω2 if
g(ω1) = g(ω2). Sinceg(ω1) = g(ω2) implies thatφ(g(ω1)) = φ(g(ω2)) for any diffeomorphismφ of Rd , the
relationT depends only on theσ -field generated by theφ og, φ ∈ diff(Rd). Let Nω be the normal suspace atω:
it is thed-dimensional subspace ofX generated by(∇gj (ω))j=1,...,d . Since (1), the canonical lifts(Zj

can)j=1,...,d

form a basis ofNω.
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Proposition 3.1. Consider the normal spacesNω1 andNω2 at two different pointsω1 andω2. There exists a uniqu
linear mappingτω2←ω1 :Nω1 → Nω2 such thatτω2←ω1(n1) = n2 is given by〈

dgk(ω1), n1
〉 = 〈

dgk(ω2), n2
〉

for k = 1, . . . , d. (8)

With the basis (∇gj (ω1))j=1,...,d for Nω1 and (∇gj (ω2))j=1,...,d for Nω2, the matrix of τω2←ω1 is

γ ∗∗(ω2)γ∗∗(ω1). Because of (4), the image byτω2←ω1 of the canonical liftZj
can(ω1) is Z

j
can(ω2). If g(ω1) = g(ω2),

thenτω2←ω1 is the same for anyφ og, whenφ ∈ Rd . Forh ∈ H , let

d

dε |ε=0
Zs

can(ω + εh) = d

dε |ε=0
γ sj (ω + εh)γjp(ω)Z

p
can(ω) + γ sj d

dε |ε=0
∇gj (ω + εh). (9)

Since(Zs
can|∇gs) = 1, we obtain

2
∑

s

(
d

dε |ε=0
Zs

can(ω + εh)

∣∣∣∇gs(ω)

)
=

∑
s,j

d

dε |ε=0
γ sj (ω + εh)γjs(ω). (10)

Forω ∈ X, X = Rm andh ∈ H , H = Rm, consider the matrix

β(ω;h) =
[

d

dε
γ ∗∗(ω + εh)

]
|ε=0

γ∗∗(ω) = −γ ∗∗(ω)

[
d

dε
γ∗∗(ω + εh)

]
|ε=0

. (11)

The map(ω,h) → β(ω;h) from X × H → End(Rd) is called theproximity formof the foliationg. We define

∇2gj (ω) :H × H → R by ∇2gj (ω)(Y,Z) = ∑
k,p

∂2gj

∂ξk ∂ξp
(ω)YkZp . We have

d

dε
γ∗∗(ω + εh)|ε=0 = {∇2gi(ω)

(
h,∇gj (ω)

) + ∇2gj (ω)
(
h,∇gi(ω)

)}
ij
. (12)

The orthogonal projection onNω of (9) is ProjNω

d
dε |ε=0Z

s
can(ω + εh) = ∑

r αsr (ω)Zr
can(ω) with

αsr(ω) = β(ω;h)sr +
∑
j

∇2gj (h,∇gr)γ
js = −∇2gr(h,Zs

can). (13)

The tangent spaceTω is the subspace ofh ∈ H such that(∇gk(ω)|h) = 0 for k = 1, . . . , d .

Theorem 3.2. For h ∈ H ,∑
s

(
d

dε |ε=0
Zs

can(ω + εh)

∣∣∣∇gs(ω)

)
= −

∑
j

∇2gj (ω)
(
Z

j
can(ω),h

) = 1

2
traceβ(ω;h). (14)

and forh ∈ Tω, (14) is the same for anyφ og, whenφ varies indiff(Rd).

From (13), we see that taking the derivative of the mapτω2←ω1 tangentially to a leaf, defines a connection
the normal fiber bundle of the foliation. This connection has a curvature equal to zero and it is integrab
proximity form is the sum of this connection with the transposed connection.

Remark 2. In (14), if h /∈ Tω, then forφ = (φ1, φ2, . . . , φd) ∈ diff(Rd),∑
j

∇2(φj o g)(ω)(Z
φj og
can , h) =

∑
j

∇2gj (Z
gj
can, h) + (∇ log(detjacφ)

(
g(ω)

)|h)
.

For non-degenerateg :X → Rd , the second fundamental form atω is (see [2])

lgω(h1, h2) =
∑
r,s

γ rs∇2gr(h1, h2)∇gs =
∑

r

∇2gr(h1, h2)Z
r
can. (15)
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If h1 or h2 is in the tangent spaceTω, thenl
φ og
ω (h1, h2) = l

g
ω(h1, h2) for any diffeomorphismφ of Rd . In that

case, we denotelω(h1, h2). Consider

Lg
ω = traceH×H lgω(•,•) =

∑
r

(∑
k

∂2gr

∂ξ2
k

)
Zr

can. (16)

From (1) and (16), it holds(Lg
ω|Zs

can(ω)) = ∑
i,k γ si(ω)

∂2gi

∂ξ2
k

(ω) and(L
g
ω|∇gs(ω)) = ∑

k
∂2gs

∂ξ2
k

(ω).

Theorem 3.3.
∑

jk ∇2gk(ω)(Z
j
can,∇gj (ω))Zk

can= traceNω×Nω l
g
ω(•,•).

We define the total curvature of the leaf atω as

Cω = traceTω×Tω lω(•,•) = Lg
ω − traceNω×Nω lgω(•,•) (17)

The proximity form is given in terms of the trilinear form

αg
ω(h1, h2, h3) = −

∑
p,s

γ ps(ω)
(
lgω

(
h1,∇gp(ω)

)|h2
)(∇gs(ω)|h3

)
. (18)

If h1 ∈ Tω, then for any diffeomorphismφ of Rd , α
φ og
ω (h1, h2, h3) = α

g
ω(h1, h2, h3).

4. The canonical form of a foliation

Form > d , we consider differentiable mapsg = (g1, g2, . . . , gd) :Rm → Rd , non-degenerate at 0, i.e. the mat
γ∗∗(0) is invertible. We define the equivalence relations:

(1) g1 ∼ g2 if there existsφ, a diffeomorphism ofRd , φ ∈ diff(Rd) such thatg2 = φ og1.
(2) g1 ∨ g2 if ‖g1(ξ) − g2(ξ)‖ � constant× ‖ξ‖3 when‖ξ‖ → 0.
Let (∼,∨) be the equivalence relation on the set of differentiable maps fromRm to Rd , obtained by superposin

the two equivalence relations∼ and∨.

Theorem 4.1. In any equivalence class for(∼,∨), there is a unique mapξ → η(ξ) from Rm to Rd with
the following properties: There exist an orthonormal basis(ej )j=1,...,m of Rm, for ξ ∈ Rm, ξ = ∑d

j=1
̂̂ξj ej +∑

j=d+1,...,m ξ̂j ej , and an orthonormal basis(fj )j=1,...,d of Rd , for η ∈ Rd , η = ∑
j=1,...,d ηjfj such that

for i = 1, . . . , d , we haveηi(ξ) = ̂̂ξi + qi(ξ̂ ) + Bi(
ˆ̂
ξ, ξ̂ ) where ξ̂ = (

d times︷ ︸︸ ︷
0, . . . ,0, ξ̂d+1, . . . , ξ̂m) and

ˆ̂
ξ =

(̂̂ξ1, . . . ,
̂̂ξd,

m−d times︷ ︸︸ ︷
0, . . . ,0). qi is an homogeneous polynomial of degree2 andBi is a bilinear form.

This reduction is called thecanonical form of the foliation. The equivalence relation(∼,∨) respects the Euclid
ean structure ofRm and that ofRd . For the study of laws of random variables defined on the Wiener spacX,
the Euclidean structure ofH is relevant, while on the image spaceRd , only the volume structure is needed. F
ω ∈ Rm, let

gk(ω) = ̂̂ξk + qk(ξ̂ ) + Bk(
ˆ̂
ξ, ξ̂ ), k = 1, . . . , d, ω = (

ˆ̂
ξ , ξ̂ ),

ˆ̂
ξ ∈ Rd, ξ̂ ∈ Rm−d . (19)

The vector field∇gk has for components

[∇gk]s (ω) = δs
k + Bk(es, ξ̂ ), s ∈ [1, d]; [∇gk]s (ω) = ∂

∂ξ̂s

qk(ξ̂ ) + Bk(
ˆ̂
ξ, es), s ∈ ]d,n], (20)

where(e1, . . . , ed , ed+1, . . . , em) is the canonical basis ofRm. Thusγ∗∗(0) = IRd . The divergenceδ∇gk of ∇gk

relatively to the Lebesgue volume is
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1)
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− traceH×H ∇2gk(0)(•,•) = −
∑

s

∂

∂ξs

[∇gk]s = −
∑
s>d

∂2qk

∂ξ̂2
s

. (21)

The normal space at 0 is the set ofˆ̂
ξ ∈ Rd and the tangent space at 0 is the set ofξ̂ ∈ Rm−d . The second fundament

form of g at ξ = 0 is (qi(ξ̂ ))i=1,...,d . The curvatureC0 of the leafg(ω) = g(0) is given by (21). We defineρ(ξ̂ ) ∈
End(Rd) by

ρ(ξ̂)(
ˆ̂
ξ) = (

Bj (
ˆ̂
ξ, ξ̂ )

)
j=1,...,d

= d

dε |ε=0
τ0+εh←0 whereh = (

ˆ̂
ξ , ξ̂ ). (22)

Then(β(0; ξ̂))jk = −[ρ(ξ̂)jk + ρ(ξ̂)kj ] and(ρ(ξ̂ ))jk = Bj (ek, ξ̂ ) = ∇2gj (ξ̂ ,∇gk(0)).

Remark 3. For j = 1, . . . , d , we can obtain a liftZj
prox of ∂

∂ηj
using the proximity endomorphism: Letg :X → Rd

defined byηi(ξ) = ̂̂ξi + qi(ξ̂ )+[ρi(ξ̂ )(
ˆ̂
ξ)]i , for i = 1, . . . , d and consider the matrixmkj = ((I +ρ(ξ̂))−1)kj , then

Z
j
prox =

d∑
k=1

mkj (ξ̂ )
∂

∂ ̂̂ξk

are respectively lifted vector fields of∂ηj , j = 1, . . . , d. (23)

The vector fields(Zj
prox(ξ)) have a simple expression, but they are not in the normal spaceNξ and they are no

defined everywhere since the matrix(I + ρ(ξ̂ )) is not always invertible. For the canonical lifts, this difficulty do
not occur.

With (11)–(17), and (21), (22), we obtain the divergences of canonical lifts as trace of the curvature an
imity forms.

Theorem 4.2. For the gradient vector fields, it holdsδµ(∇gs)(ω) = (ω−Cω|∇gs(ω)) and for the canonical lifts(1),

δµ(Zs
can)(ω) = (ω − Cω|Zs

can) − 1

2
traceβ(ω;Zs

can), (24)

wheretraceβ(ω;Zs
can) is given by(14).

For a basic vector fieldZ in the normal space, see (7), the formula (24) extends with the additional termδν(z),
the divergence with respect toν = g ∗ µ of the vector fieldz = ∑

j zj ∂j on Rd deduced from (7). In infinite
dimension, the scalar product(x|Z) involves a Skorokhod stochastic integral.
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