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Abstract

The dynamical behavior of a one-dimensional inelastic particle system with two particles of different masses trave
tween two walls is investigated. Energy is added at only one of the walls, which is oscillating, while the other wall is sta
We show that if the particle nearer to the stationary wall is slightly lighter than the other particle and collisions between
tend to the elastic limit, there are an infinite number of stable orbits. We also show that the widely studied situation
masses is an extremely special case, in which all the orbits are degenerate and collapse to a single trivial orbit in whi
the particles is trapped against the stationary wall.To cite this article: J.J. Wylie, Q. Zhang, C. R. Acad. Sci. Paris, Ser. I 339
(2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Orbites périodiques pour un système inélastique uni-dimensionnel de particules. On étudie le comportement dynamiq
d’un système inélastique uni-dimensionnel formé de deux particules de masses différentes se déplaçant entre deux
l’énergie est ajoutée à l’un des murs, qui oscille, alors que l’autre est stationnaire.On montre que, si la particule proche du m
stationnaire est un peu plus légère que l’autre, et si les collisions entre les particulestendent vers la limite élastique, alors il y a
nombre infini d’orbites stables. On montre également que la situation couramment étudiée où les masses sont égales
très particulier, dans lequel toutes les orbites sont dégénérées et tendent vers une orbit e triviale unique où l’une des
est piégée par le mur stationnaire.Pour citer cet article : J.J. Wylie, Q. Zhang, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

1. Introduction

In recent years there has been significant interest in one-dimensional (1D) models of dissipative particle system
The understanding obtained in these relatively simple systems has led to a number of important insights
problem in higher dimensions. Particular interest has been aroused by the problems that occur when de
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equations to describe the macroscopic scale of systems with particles of equal mass [1–3,7,9,10]. An understand
of the particle-scale dynamics is fundamental to ensuring the validity of assumptions frequently used when
macroscopic equations. The particle-scale dynamics has only been studied for systems with only one pa
or systems with particles of equal mass [6,8].

In this Note we investigate how the dynamics of these systems are affected when the particles have
masses. It is well known that when the masses are equal, the particle nearest the oscillating wall move
whereas the remaining particles are typically trapped close to the stationary wall [1]. We show that this
studied phenomena in equal mass systems is an extremely special case. When the masses are not equ
stable periodic orbits can be realized. In fact, as the coefficient of restitution tends to the elastic limit, the
of periodic orbits becomes unbounded. As the mass ratio tends to unity, all of these orbits collapse to
degenerate orbit and the trivial dynamics observed in the equal mass case are recovered.

2. Formulation

We consider the motion of two particles constrained on a line between two walls that are separated b
tancel. For definiteness we assume that wall-particle collisions are elastic. Energy is added at the left w
and the right wall is fixed. The left and right walls are referred to as the ‘oscillating wall’ and the ‘stationary
respectively. In applications involving granular materials, it is often the case that energy is added throug
tions at a boundary [5]. Thus, we adopt a ‘saw-tooth’ motion [5] for the oscillating wall, in which the wall move
with a constant speedv over a distancea before executing an instantaneous jump back to its starting position
further assume thata � l, and so, to the leading order, all collisions with the oscillating wall occur at the s
location. When two particles collide, momentum is conserved and their new relative velocity is just−e times their
old relative velocity, wheree is the coefficient of restitution. Since the physical size of the particles does not play
role in 1D we consider point particles. We choose our length and time scales such thatl = 1 andv = 1. We assume
the left particle has unit mass and the right particle has massm.

There are three types of collisions:C – collisions between particles;R – collisions between the right particle an
the stationary wall; andL – collisions between the left particle and the oscillating wall. When a collision oc
the velocities of the left and right particlesv1 andv2, are updated according to the following rules,

C :

(
v1
v2

)
�−→ 1

1+ m

(
1− em m(1+ e)

1+ e m − e

)(
v1
v2

)
,

R :

(
v1
v2

)
�−→

(
v1

−v2

)
, and L :

(
v1
v2

)
�−→

(
2− v1

v2

)
.

3. Construction of periodic orbits

For a given sequence of collisions one simply needs to solve a set of linear equations to determine the v
and locations of the collisions. The nonlinearity in the system arises exactlybecause the sequence of collisions
unknown. This is because finding the appropriate collision requires choosing the minimum time amongst the thre
possible collisions, and this is inherently nonlinear.

However, not all collision sequences will be feasible, since collisions can only occur when the two in
objects are moving towards each other. Even if the sequence gives velocities that are consistent, one stil
check that the order of collisions is consistent. In the case of two particles this reduces to checking the par
approaching each other and that collisions between the two particles occur between the two walls.

It is easy to see that any sequence must include at leastone collision between particles and at least one collis
with each wall. Between any two inter-particle collisions, there are three possibilities: a collision with the oscillat
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wall, a collision with the stationary wall or collisions with both walls. These represent the three basic subseq
that are the building blocks from which any sequence must be constructed. We denote these subseq
{LC,RC,LRC(= RLC)}, where the sequence is read from right to left. In addition, since this problem is linea
sequence that is made up of a number of repetitions of a subsequence must be exactly the same as its su
e.g.LRCLRC must be made up of two identical sets of the solution ofLRC.

Given a sequence, we need to check the consistency and stability of the sequence via the following pr
Firstly, we need to solve a linear system to ensure that the velocities are periodic. For inelastic collisions (e < 1) it
is easy to show that this linear system always has a unique solution. Secondly, we compute the transit tim
one inter-particle collision to the next for each of the twoparticles. By equating the transit times and requir
that the sequence is periodic, we can compute all of the collision locations. Thirdly, we need to check the p
are approaching each other and that the locations of the collisions are between the two walls. Finally, we
ensure that instabilities do not arise in the locations of the collisions. If any of these requirements fails, th
periodic orbit cannot be realized.

Following this procedure, one can show that theLRC orbit is always unstable. TheLCRC is consistent and

stable only if 1� m < 1+e2

2e
, and theLRCRC is consistent and stable only ifm � 1, m > 1+e2

1+4e+e2 andm � 1−e
1+e

.

4. Multiple orbits near m = 1

The LCRC orbit can only be realized form � 1, whereas theLRCRC orbit can only be realized form � 1. If
m is decreased through the transitionm = 1 an extra collision with the right wall is added to the sequence. W
m = 1, the right particle is trapped tightly against the wall and has zero velocity for most of the period.
case, the two orbits are identical since the collision with the right wall becomes degenerate. It is natural to c
whether combinations of these two sequences can give riseto consistent and stable orbits. Therefore, we exam
collision sequences of the form(LRCRC)(LCRC)N−1. Following the procedure outlined in the previous sect
we can check the consistency and stability of such orbits.

If we consider the operatorsR andC to be matrices, the velocitiesv1 andv2 satisfy

[R − (−RCRC)N ][v1, v2]T =
N−1∑
i=0

(−RCRC)i[2,0]T.

Here T denotes transpose. After solving forv1 andv2 we can calculate the locations of the collisions. We
interested in the case whenm − 1 is small and we therefore expand the results in powers ofm − 1. We find that the
location of the final collision, that is, the last collision in the only(LRCRC) block, will have the largest value an
the location of the first collision will have the smallest value. This is because the net effect of each of the(LCRC)

blocks is to move the locations of subsequent collisions toward the right.
In the limit asm → 1, the stability condition is automatically satisfied and so this type of orbit is alwa

stable. We also find that the location of the first collision in the sequence occurs at a location given byp(1) =
1− (m − 1)S(1) + O(m − 1)2, whereS(1) > 0. This implies that the first inter-particle collision will occur betwe
the two walls form < 1. However, form > 1 the location will occur behind the stationary wall and therefore or
of this type can never occur form > 1.

We find that the location of the last collision, i.e. the 2N -th inter-particle collision in the sequence,p(2N), is
given byp(2N) = 1 + (m − 1)S(2N) + · · · , whereS(2N) is the gradient of the location of the final collision in t
sequence with respect tom,

S(2N) =




(1+ e)3[1− e2N − 2NeN−1(1− e)]
4(1− e2)[1− (−1)N/2eN ]2 , if N is even,

(1+ e)3[1− e2N − 2NeN−1(1− e)]
4(1− e2)[1− (−1)NeN ]2 , if N is odd.
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The requirement that all collisions occur between the two walls leads to the conditionS(2N) > 0 whenm < 1. Fore
sufficiently close to unity, this will always be true and so the orbit will be consistent. The gradient,S(2N) can only
change sign at the zeros of the polynomial, 1− e2N − 2NeN−1(1− e). As N → ∞ this polynomial has a rooteN

near unity. A straightforward asymptotic expansion giveseN = 1− 3
N2 + O( 1

N4 ). Hence, fore > eN , there will be
a solution with 2N inter-particle collisions. Asymptotically,eN is an increasing function ofN , and so if theN -th
orbit exists then the lower orbits must also exist. Hence, asymptotically, the number of periodic orbits wi
least of order

√
3/(1− e) ase → 1.

Whenm = 1, all of the collisions in any of these periodic orbits will occur exactly at the stationary wall.
final right collision in theLRCRC block thus becomes degenerate and the(LRCRC)(LCRC)N−1 orbit becomes the
same as the(LCRC)N orbit. That is, an orbit is made up ofN repeatedLCRC sequences. Since the problem
linear, the velocities and locations for the orbit must be made up ofN repeated solutions of theLCRC problem.
This orbit is just the trivial case in which the right particle is trapped against the stationary wall. So, all of the
of the form(LRCRC)(LCRC)N−1 that exist form < 1 become degenerate whenm = 1 and collapse to the trivia
LCRC orbit.
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