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Abstract

We show that the vector space of fixed valence Killing tensors on a space of constant curvature is naturally isomor
certain highest weight, irreducible representation of the general linear group. The isomorphism is equivariant in the s
the natural action of the isometry group corresponds to the restriction of the linear action to the appropriate subgrou
application, we deduce the Delong–Takeuchi–Thompson formula on the dimension of the vector space ofKilling tensors from
the classical Weyl dimension formula.To cite this article: R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Tenseurs de Killing comme des représentations irréductibles du groupe linéaire. Nous démontrons que l’espace d
tenseurs de Killing d’un ordredonné est naturellement isomorphe à une représentation irréductible de plus haut poids
groupe linéaire. L’isomorphisme est équivariant ; les transformations par isométries correspondent à l’inclusion du gr
isométries comme un sous-groupe particulier du groupe linéaire. Comme application de cet isomorphisme nous ob
formule de Delong–Takeuchi–Thompson sur la dimension de l’espace des tenseurs de Killing à partir de la formule classiqu
de dimension de Weyl.Pour citer cet article : R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and preliminaries

Let (Mn,gαβ) be ann-dimensional, pseudo-Riemannian manifold of constant curvature. Various geo
structures onMn can be described in terms ofG, the corresponding Lie group of isometries [4,8]. Recently, it
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been shown that a group and invariant-theoretic approach can also be applied to the study of Killing ten
Continuing in the same direction, we announce a characterization of Killing tensors on pseudo-Riemannian spa
of constant curvature as certain irreducible representations of the general linear group. Our result is val
dimensions, all signatures of the metric, and for all values (positive, negative, and zero) of the curvature.

A Killing tensor of valencep is a symmetric tensor fieldhα1...αp satisfying

∇(α0hα1...αp) = 0. (1)

Let Kp denote the vector space of such tensor fields onMn, with K1 being the Lie algebra of Killing vector fields
On spaces of constant curvature every Killing tensor canbe represented as a sum of symmetric products of Kil
vectors [2]. However, certain such products vanish identically; these form the so-called syzygy module [6
Kp is a quotient of Symp K1 by the syzygy module. It is desirable to describe this quotient explicitly.

Takeuchi took a step in this direction by showing [6] thatKp is isomorphic to a certain representation of
linear group by invoking the Bott–Borel–Weil theorem [1]. We go further by exhibiting an elementary iso
phism betweenKp and this irreducible representation. Our construction uses a Young symmetrizer to d
complementary subspace to the syzygy module.

The main result resolves an outstanding conjecture about the equivariance of the action of the isometry g
An additional application is a simple proof of the Delong–Takeuchi–Thompson dimension formula [2,6,7].

2. Representation theory of the general linear group

In this section we recall some basic facts from the representation theory of the general linear group [3]. LeV

be a finite-dimensional, real vector space,Sm the symmetric group onm elements, andQSm the group algebra
with rational coefficients. Letm = λ1 + · · · + λ�, whereλ1 � λ2 � · · ·λ� > 0, be a partition of an integerm.
Let a = (a1, . . . , an), whereaj = λj − λj+1, be the corresponding weight sequence. In the sequelτij denotes the
standard tableau, defined byτij = λ1 + · · · + λi−1 + j , wherei = 1, . . . ,m is the row index andj = 1, . . . , λi is
the column index.

Let SaV denote the irreducible representation of GL(V ) generated by the highest-weight element
Syma1 Λ1V ⊗ · · · ⊗ Syman ΛnV . Let ca ∈ QSm be the Young symmetrizer (i.e.,c2

a = ca) defined by

ca = ka

∑
q,r

(−1)qqr. (2)

In the above summationq andr range over all permutations preserving, respectively, the columns, and the ro
the tableau. The normalization constant is given by

ka = 1

b1! · · ·b�!
∏

1�i<j��

(bi − bj ), with bj = λj + � − j. (3)

The representationSaV consists of all tensors satisfyingcaA = A. The dimension of the representation is given
the Weyl dimension formula:

dimSaV =
∏

1�i<j�n

λi − λj + j − i

j − i
. (4)

We will be particularly interested in weights of the forma = (0,p,0, . . . ,0), and denote the correspondi
representation, concisely, byS{p}V . The corresponding symmetry condition admits the following description. Fixp
and letΞ = Λ if p is odd, andΞ = Sym if p is even. Letσ : Symp Λ2V → Ξ2 Symp V , be defined by

σ(K)a1a2···apb1b2···bp =
∑

r∈Sp

Ka1br(1)a2br(2)···apbr(d)
, K ∈ Symp Λ2V, (5)

and letκ :Ξ2 Symp V → Symp Λ2V , be defined by
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κ(S)a1b1a2b2···apbp = 2pŜ[a1b1][a2b2]···[apbp], (6)

where we define

Ŝa1b1a2b2···apbp = Sa1a2···apb1b2···bp , S ∈ Ξ2 Symp V .

Proposition 2.1. The representationS{p}V consists ofK ∈ Symp Λ2V satisfying

κ
(
σ(K)

) = (p + 1)!K. (7)

Thus, the tensors in questions havep skew-symmetric pairs of indices, but are symmetric with respect to
terchange of the undisturbed pairs. Eq. (7) means that these tensors also satisfy a number of other symm
conditions, e.g., the cyclic condition

Kabc··· + Kbca··· + Kcab··· = 0. (8)

Indeed, forp = 2, conditions (7) and (8) are equivalent. The corresponding irreducible representation con
type (4,0) tensors having the symmetry type of the Riemann curvature tensor. However, forp > 2, Eq. (7) implies
additional symmetry conditions, which we will not analyze here.

Let us also note that a direct application of (4) withn = dimV − 1 gives

dimS{p}V = 1

n

(
n + p

p + 1

)(
n + p − 1

p

)
. (9)

3. Killing tensors

Henceforth, we assume dimV = n + 1. Let

(u,v) = uava, u,v ∈ V

be a signature(n + 1− q, q) inner product, which we use to endowV with a flat metric. We consider the standa
models [8] of constant-curvature submanifoldsι :Mn → V . These are either a generalized unit sphere,

Mn = {x ∈ V : xaxa = 1}; (10)

or a unitally displaced hyperplane,

Mn = {x ∈ V : uaxa = 1}, uaua = 1. (11)

Let G < GL(V ) be the corresponding group of orientation preserving isometries. In the first case,G ∼= SO(n+1−
q, q). In the second case,G is isomorphic to the semi-direct product SO(n − q, q) � V .

UseφA, A ∈ Symp V ∗ to denote the type(0,p) symmetric tensor field onV with constant components. LetπA

be the corresponding degreep, homogeneous polynomial

πA(x) = A(x,x, . . . ,x), x ∈ V.

UseφA⊗B, A,B,∈ Symp V ∗ to denote the type(0,p) symmetric tensor field defined by

φA⊗B(x) = πA(x)φB, x ∈ V.

SinceΞ2 Symp V ∗ is a subspace of Symp V ∗ ⊗ Symp V ∗, the above definition extends to give a type(0,p) tensor
field φS for everyS ∈ Ξ2 Symp V ∗. ForK ∈ Symp Λ2V ∗, useK̂ to denote the symmetric type(0,p) tensor field
onMn defined by

K̂ = ι∗(φσ(K)),
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whereι∗ denotes the inclusion pullback map, and whereσ is the symmetrization operator defined in (5). Treat
the vector space componentsxa, a = 1, . . . , n + 1 as functions of local coordinates onMn, and using∂αxa,

α = 1, . . . , n to denote the corresponding partial derivatives, we have

K̂α1···αp(x) = Ka1b1···apbp (∂α1x
a1) · · · (∂αpxap)xb1 · · ·xbp , x = (x1, . . . , xn+1) ∈ Mn ⊂ V.

Proposition 3.1. Every sucĥK is a Killing tensor onMn.

The above follows from (1), (10), (11) by local coordinate calculations.

Proposition 3.2. The mappingΥ : Symp Λ2V ∗ →Kp defined byΥ (K) = K̂ is a linear surjection.

The casep = 1 corresponds to the isomorphism betweenΛ2V ∗ andK1, and can be established directly. F
p > 1, we prove the proposition by noting that, on a spacesof constant curvature,all Killing tensors can be
generated using symmetric products of Killing vectors [2,6].

Proposition 3.3. The kernel ofΥ is isomorphic to the kernel ofσ , as defined in Eq.(5).

Let Adg, g ∈ GL(V ), denote the usual adjoint action onV ∗, namely

(Adg u)(v) = u(g−1v), v ∈ V, u ∈ V ∗.
We also let Adg denote the corresponding action ofg on the tensor algebra ofV ∗. For an isometryg ∈ G, the
pull-back map(g−1)∗ is an invertible linear transformation ofKp , which defines a representation ofG onKp .

Proposition 3.4. For g ∈ G, K ∈ Symp Λ2V ∗, we have

(g−1)∗(K̂) = Âdg K.

Here is our main theorem. It follows directly from Propositions 3.3 and 3.4. A form of this result, expres
terms of the infinitesimal action on the parameter space induced by the isometry group, was conjectured in
verified for a number of particular cases.

Let Πp denote the restrictionΥ to S{p}V ∗.

Theorem 3.5. The linear mapΠp :S{p}V ∗ →Kp is a G-representation isomorphism.

As per the comment at the end of the preceding section,we also obtain a direct proof of the Delong–Takeuchi
Thompson formula [2,6,7].

Corollary 3.6. The dimension ofKp is given by the right-hand side of Eq.(9).
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