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Abstract

A complete orthonormal system of functionsΘ = {θn}∞
n=1, θn ∈ L∞[0,1] is constructed such that

∑∞
n=1 anθn converges almos

everywhere on[0,1] if {an}∞
n=1 ∈ l2 and

∑∞
n=1 anθn diverges a.e. for any{an}∞

n=1 /∈ l2. We also show that for any comple
ONS{fn}∞

n=1 of functions defined on[0,1] there exists a fixed non decreasing subsequence{nk}∞k=1 of natural numbers suc

that for anyf ∈ L0[0,1] and some sequence of coefficients{bn}∞
n=1,

nk∑

n=1

bnfn → f a.e. whenk → ∞.
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Résumé

La loi zéro-un pour un système orthonormal complet. On construit un système orthonormal completΘ = {θn}∞
n=1, θn ∈

L∞[0,1] tel que
∑∞

n=1 anθn converge presque partout pour n’importe quel{an}∞
n=1 ∈ l2 et diverge presque partout pour n’impor

quel {an}∞
n=1 /∈ l2. Nous démontrons que pour toute système orthonormal complet{fn}∞

n=1 il existe une sous suite croissan

{nk}∞k=1 d’entiers naturels tels que pour toutf ∈ L0[0,1] il existe une suite de coefficients tels que

Nk∑

n=1

bnfn → f p.p. sik → ∞.
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Let {ϕn}∞n=1 be an orthonormal system (ONS) of functions defined on the closed interval[a, b] then we will say
that {ϕn}∞n=1 is a divergence system if the series

∑∞
n=1 anϕn diverges almost everywhere (a.e.) on[a, b] for any

{an}∞n=1 /∈ l2. An ONS{ϕn}∞n=1 is called a convergence system if
∑∞

n=1 anϕn converges a.e. for any{an}∞n=1 ∈ l2.
The given ONS will be called a divergence system in the weak sense if for any{an}∞n=1 /∈ l2 the series

∑∞
n=1 anϕn

diverges on a set of positive measure. In a recent work [6,7] the author has constructed a complete ONS of
which is a divergence system. A complete ONS which is a divergence system in the weak sense was const
earlier by Kashin [3,5]. The interest of existence of such systems was indicated by Ulyanov [13], p. 695, w
formulated the following problem: does there exist a complete ONS{ϕn}∞n=1 of functions defined on the closed i
terval[0,1] such that

∑∞
n=1 anϕn converges a.e. for any{an}∞n=1 ∈ l2 and

∑∞
n=1 anϕn diverges a.e. if{an}∞n=1 /∈ l2?

We give a positive answer to Ulyanov’s problem. We will say that an ONS{ϕn}∞n=1 is a simple ONS if∑∞
n=1 anϕn converges a.e. for any{an}∞n=1 ∈ l2 and

∑∞
n=1 anϕn diverges a.e. for any{an}∞n=1 /∈ l2.

Note that Kashin has proved [3,4] that there exists a complete ONS{ψn}∞n=1 of functions defined on the close
interval [0,1] such that

∑∞
n=1 anψn converges a.e. for any{an}∞n=1 ∈ l2 and

∑∞
n=1 anψn diverges on some set o

positive measure if{an}∞n=1 /∈ l2. He indicated in [3] that Ulyanov’s problem is left open. We prove

Theorem 1. There exists a complete ONSΘ = {θn}∞n=1, θn ∈ L∞[0,1] such that
∑∞

n=1 anθn converges almost every

where on[0,1] if {an}∞n=1 ∈ l2 and
∑∞

n=1 anθn diverges a.e. for any{an}∞n=1 /∈ l2.

One of the principal problems of the theory of orthogonal series is to describe the class of coefficients fo
a given orthonormal system converges in a determinate sense. The constructed system{θn}∞n=1 has the following
property: a series with respect to our system converges on a set of positive measure if and only if the coe
belong tol2, moreover if the series converges on a set of positive measure then it converges a.e. Observe t
now the mentioned above property was known only for some lacunary orthonormal systems.

In [6,7] we have mentioned the role of the divergence system in the theory of representation of funct
series. Evidently the simple ONS as a system of divergence has the same properties. Moreover it show
ference that exists between the representation in measure or in some other topology (see [9,8,14]) from
and the representation in the sense of convergence almost everywhere or on some fixed subset of positiv
from the other side.

Recall that a system of functions{fn}∞1 defined on[0,1] is called anm-representation system of the spaceF if,
for everyf ∈ F, there exists a series

∑∞
1 anfn, an ∈ R, that converges in measure to the functionf. An F -space of

functions defined on[0,1] is called anR-space if anym-representation system of the spaceF is anm-representation
system of the spaceL0

[0,1]. A wide class ofF -spaces of functions, including the spacesL
p

[0,1],0 < p < ∞, are
R-spaces (see [9]).

The existence of a simple ONS shows that for the pointwise convergence on a fixed subset of positive
the described above phenomenon is not true. Combiningsome theorems of Pogosyan–Arutyunyan [1,12], Bo
gain [2] and Marcinkiewicz–Menshov [10,11] we show that for any complete ONS the following result is tru

Theorem 2. Let {fn}∞n=1 be a complete ONS of functions defined on[0,1]. Then there exists a non decreasi
subsequence{nk}∞k=1 of natural numbers such that for any measurable finite a.e. function defined on[0,1] and
some sequence of coefficients{bn}∞n=1

nk∑

n=1

bnfn(x) → f (x) a.e. whenk → ∞.
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