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Abstract

Asymptotical properties of orthogonal polynomials from the so-called Szegő class are very well-studied. We obtain asym
totics of orthogonal polynomials from a considerably larger class and we apply this information to the study of their
behavior.To cite this article: S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Polynômes orthogonaux et la condition de Szegő généralisée.Les propriétés asymptotiques des polynômes orthogon
de la classe de Szegő sont très bien étudiées. Nous obtenons les asymptotiques des polynômes orthogonaux appa
une classe considérablement plus large. Ensuite, nous appliquons cette information à l’étude du comportement spec
derniers.Pour citer cet article : S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In this Note, we prove asymptotics for orthogonal polynomials from the Szegő class with a polynomial weigh
and we apply the information to the study of their spectral behavior.

Let σ be a non-trivial Borel probability measure on the unit circleT = {z: |z| = 1}. Consider orthonorma
polynomials{ϕn} with respect to the measure,

∫
T

ϕnϕm dσ = δnm whereδnm is the Kronecker’s symbol. It is
very well known [3,4,6,7] that polynomials{ϕn} generate a sequence{αk}, |αk| < 1, of the so-called Verblunsk
coefficients through special recurrence relations. Conversely, the measureσ (and polynomials{ϕn}) are completely
determined by the sequence{αk}. Hence, it is natural to express properties of the sequence{αk} and polynomials
{ϕn} in terms ofσ and vice versa.

E-mail addresses:denissov@its.caltech.edu (S. Denisov), kupin@cmi.univ-mrs.fr (S. Kupin).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.06.004
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We say thatσ is a Szeg̋o measure (σ ∈ (S), for the sake of brevity), if dσ = σ ′
acdm + dσs and the densityσ ′

ac of
the absolutely continuous part ofσ is such that∫

T

logσ ′
acdm > −∞.

Here, the singular part ofσ is denoted byσs, andm is the probability Lebesgue measure onT, dm(t) = dt/(2π it) =
1/(2π)dθ, t = eiθ ∈ T.

For instance [3,7], a measureσ belongs to the Szegő class if and only if the corresponding sequence{αk} is
in l2. Moreover, this happens if and only if analytic polynomials are not dense inL2(σ ). Asymptotic properties o
orthogonal polynomials connected toσ ∈ (S) can be easily described in terms of the function

D(z) = exp

(
1

2

∫
T

t + z

t − z
logσ ′

ac(t)dm(t)

)
lying in the Hardy classH 2(D) on the unit diskD = {z: |z| < 1}. Namely, we have

lim
n→∞

∫
T

|Dϕ∗
n − 1|2 dm = 0

and, in particular, limn→∞ D(z)ϕ∗
n(z) = 1 for everyz ∈ D. Above,ϕ∗

n(z) = znϕn(1/z̄). A modern presentation an
recent advances in this direction can be found in [4,6].

It is extremely interesting and important to obtain similar results for different classes of measures. Con
trigonometric polynomialp, p(t) � 0, t ∈ T, given by

p(t) =
N∏

j=1

|t − ζj |2κj . (1)

Here{ζj } are points lying onT andκj are their “multiplicities”. We say thatσ is in the polynomial Szeg̋o class
(i.e.,σ is a (pS)-measure orσ ∈ (pS), to be brief), if dσ = σ ′

acdm + dσs, σs being the singular part of the measu
and ∫

T

p(t) logσ ′
ac(t)dm(t) > −∞. (2)

The asymptotic behavior of orthogonal polynomials forσ ∈ (pS) is completely described in Theorems 2.2 and 2
This information is used to construct wave operators for the so-called CMV-representations in Theorem 2
approximation by analytic polynomials inL2(σ ), σ ∈ (pS), is addressed in Theorem 2.5.

2. Results

We fix the polynomialp (1) for the rest of this paper. For the sake of transparency we assumeκj = 1; the
discussion of the general case follows the same lines. LetC andC0 be the CMV-representations connected toσ and
m (see [1,6, Chapter 4]), and rank(C − C0) < ∞.

We setΦ(C) = ∫
T

p(t) logσ ′
ac(t)dm(t).

Lemma 2.1.Let rank(C − C0) < ∞. Then there is a polynomialP such that∫
T

p logσ ′
acdm = a0t0 + Retr

(
P(C) − P(C0)

)
(3)

wherea0 = 2
∫
T

p dm, t0 = ∑
k logρk , andρk = (1− |αk|2)1/2.
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We denote the right-hand side of equality (3) byΨ (C) and we rewrite it in a different form. To this end, w
consider the shiftS : l2(Z+) → l2(Z+), given bySek = ek+1 and, for a bounded operatorA on l2(Z+), we look at
τ (A) = S∗AS. Consequently, we see that

Ψ (C) =
2N+1∑
k=0

{
a0 logρk + Re

((
P(C) − P(C0)

)
ek, ek

)} +
∞∑

k=0

ψ ◦ τ k(C)

whereψ(C) = a0 logρ2N+2 + Re((P (C) − P(C0))e2N+2, e2N+2). It turns out that there exist functionsη andγ ,
depending on a finite number of arguments, such that for anyC with rank(C − C0) < ∞

Ψ (C) = Ψ̃ (C) =
2N+1∑
k=0

{
a0 logρk + Re

((
P(C) − P(C0)

)
ek, ek

)} +
∞∑

k=0

η ◦ τ k(C) + γ (C)

and, moreover,η is nonpositive (see [5], Lemma 3.1).

Theorem 2.2[5, Theorem 1.4]. A measureσ is polynomially Szeg˝o (see(2)) if and only if Ψ̃ (C) > −∞. Moreover,
in this caseΦ(C) = Ψ̃ (C) = Ψ (C).

We turn now to the description of asymptotic properties of orthogonal polynomials for (pS)-measures. C
a modified Schwarz kernelK(t, z) = t+z

t−z
q(t)
q(z)

whereq(t) = C(
∏

j (t − ζj )
2)/tN , and the constantC, |C| = 1, is

chosen in a way thatq(t) ∈ R for t ∈ T (i.e.,C = (
∏

j (−ζj ))
−1). Furthermore, define

D̃(z) = exp

(
1

2

∫
T

K(t, z) logσ ′
ac(t)dm(t)

)
, ϕ̃∗

n(z) = exp

(∫
T

K(t, z) log
∣∣ϕ∗

n(t)
∣∣dm(t)

)
.

The functions{ϕ̃∗
n} are called (reversed) modified orthogonal polynomials with respect toσ . It can be readily see

that |D̃|2 = σ ′
ac and|ϕ̃∗

n| = |ϕ∗
n| = |ϕn| a.e. onT. Furthermore, we see thatϕ̃∗

n = ψnϕ
∗
n , where

ψn(z) = exp

(
A0n +

N∑
j=1

(
Ajn

z + ζj

z − ζj

+ Bjn

{
z + ζj

z − ζj

}2))
(4)

and A0n,Bjn ∈ iR, Ajn ∈ R. The coefficients{A0n,Ajn,Bjn}j,n can be expressed in a closed form throu
Verblunsky coefficients{αk}.

Theorem 2.3.Letσ ∈ (pS). Then

lim
n→∞

∫
T

|D̃ϕ̃∗
n − 1|2 dm = 0

and, in particular,limn→∞ D̃(z)ϕ̃∗
n(z) = limn→∞ D̃(z)ψn(z)ϕ

∗
n(z) = 1 for anyz ∈ D.

Special versions of this result for Jacobi matrices are obtained in [2,5]. The proof of the theorem is p
based on the sum rules proved in Theorem 2.2. The second important observation is that, for anε > 0 small
enough,|D̃ϕ̃∗

n(z)| � Cε√
1−|z| wherez ∈ D\(⋃k Bε(ζk)), Bε(ζ ) = {z: |z − ζ | < ε}.

We use asymptotics described above, to construct modified wave operators. LetF0 :L2(m) → l2(Z+),

F :L2(σ ) → l2(Z+) be the Fourier transforms associated to the CMV-representationsC andC0, see [6, Chapter 4]
Recall thatC =FzF−1, C0 =F0zF−1

0 .
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Theorem 2.4.Letσ ∈ (pS). The limits

Ω̃± = s- lim
n→±∞ eW(2n,C)CnC−n

0

exist. Here

W(C, n) = A0n +
N∑

j=1

(
Ajn

C + ζj

C − ζj

+ Bjn

{C + ζj

C − ζj

}2)
and coefficients{A0n,Ajn,Bjn} are defined in(4). We also have

F−1Ω̃+F0 = χEac

1

D̃
, F−1Ω̃−F0 = χEac

1
�̃D

whereEac= T\suppσs.

The proof of the above theorem mainly follows [6, Chapter 10].
We now briefly discuss approximation by analytic polynomials inL2(σ ) with σ ∈ (pS). We putP ′

0 to be the
set of analytic onD polynomialsg with the propertyg 	= 0 on D; normalize them by the conditiong(0) > 0.
Furthermore, for ag ∈P ′

0, we setλ(g) = exp(
∫

T
p log|g|dm) and defineP ′

1 = {g: g ∈ P ′
0, λ(g) = 1}.

Theorem 2.5.Let dσ = w dm + dσs. Then

exp

(∫
T

p log
w

p
dm

)
� inf

g∈P ′
1

‖g‖2
σ = inf

g∈P ′
0, ‖g‖σ �1

1

|λ(g)|2 � exp

(∫
T

p logw dm

)
.

Remind thatσ is a Szeg̋o measure if and only if the system{eiks}k∈Z is uniformly minimal inL2(σ ). Saying that
σ is a (pS)-measure translates into the uniform minimality of another system,{eikν(s)}k∈Z, in the same spaceL2(σ ).
Above,ν(s) = C0

∫ s

0 p(eis ′
)ds′ wheres, s′ ∈ [0,2π] and the constantC0 comes from the conditionC0

∫
T

p dm = 1,
see [5], Lemma 2.2.

We conclude the note with a few examples. For instance, classical Pollaczek polynomials [7] belong to
(pS)-class withp(eiθ ) = sin2 θ . It was proved recently in [6, Chapter 2] thatσ ∈ (p0S) with p0(eiθ ) = 1− cosθ if
and only if{αk} ∈ l4 and{αk+1 −αk} ∈ l2. Theorems 2.2–2.5 also apply to this case and yield explicit formula
{ϕ̃∗

n}, {ψn}, D̃ and coefficients{A0n,Ajn,Bjn}.
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