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Abstract

A new finite volume for the discretization of anisotropic diffusion problems on general unstructured meshes in any space
dimension is presented. The convergence of the approximate solution and its discrete gradient is proven. The efficiency of the
scheme is illustrated by numerical resule.citethisarticle: R. Eymard et al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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Résumé

Un schéma volumes finis pour les probléemes anisotropes sur des maillages non structur®s. présente ici un nouveau
schéma volumes finis pour la discrétisation des équations desidiff anisotropes sur des maijés non structds, pour toute
dimension d’espace. On prouve la convergence de la solutionctpie, ainsi que celle d’'un giiedt approché. La pertinence
du schéma est illustrée par des résultats numéridroes.citer cet article: R. Eymard et al., C. R. Acad. Sci. Paris, Ser. | 339
(2004).
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1. Introduction

Anisotropic diffusion problems are encountered in various scientific fields: geosciences, biology, finance. Well
known discretization methods are finite differences, finite volumes and finite elements. The mathematical study
of convergence is quite well known in the case of isotropic diffusion for the three methods, and is the object of
numerous works in the case of anisotropic diffusion; a thorough mathematical theory is known in the finite element
theory. For various reasons, such as the ease of implementation, construction of simple Voronoi meshes and th
coupling of equations of different kind, finite volumes are often chosen in actual applications. Our aim here is to
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construct a finite volume scheme for anisotropic problems and prove its convergence towards the solution of the
continuous problem. We thus study the following problem: find an approximation of the variational weak solution
it € H}(£2) to the following equation:

—div(AVa) = f in £, 1)

with homogeneous Dirichteboundary conditions, wher€ is a polygonal open bounded connected subset
of RY, d e N*, andf e L?(£2). The functionA is measurable fron® to the set of symmetrié x d real matrices,
the eigenvalues of which are included[w(x), 8(x)] wherea, 8 € L*°(£2) are such that & ag < a(x) < B(x)
fora.e.x € £2.

The track that we follow here consists in building an approximate gradient, using the usual cell values of the
discrete unknowns. Note that such an approximate gradient was already considered in [3]. However, in this latter
work, the approximate gradient was constructed using the so-called Raviart—Thomas shape functions. Unfortu-
nately, these functions have simple expressions only in the case of triangles and rectangles. Here, we shall develo
a new approximate gradient which does not use these shape functions, and which is easy to compute on any admi
sible finite volume mesh.

2. The finite volume scheme

Let7 = (M, &, P) be an admissible finite volume discretizationtdfn the sense of [2], Definition 9.1, p. 762.
An example of two neighbouring control volum&sand L of M is depicted in Fig. 1. The notations are identical
to that of [2].

The size of the discretization is defined by: $z¢ = sugdiam(K), K € M}.

The set of interior (resp. boundary) edges is denotediy(resp.&ext). For anyo € int, 0 = K|L (resp.
Eext, 0 € Ek). For all K € M, we denote byVk the subset of\1 of the neighbouring control volumes, and we
denote bYEx ext = Ex N Eext.

ForallK € M ando € £k, we defineDk , = {txxk + (1 —1t)y,t € (0,1), y e o}. Forallo € &, letx, denote
the center of gravity of. We shall measure the regularity of the mesh through the function(@gdefined by

dK,O’

regul7) :inf{d(xw”),

Ke/\/l,oeSK}. (2)
We denote byH7(£2) C L2(£2) the space of piecewise constant functions on the control volumes. Forall
H7($2) and for allK € M, we denote bywgk the constant value ab in K. For any functionp € C°(£2), we
denote byP ¢ € H7(£2) the piecewise function equal ig(xx) on cellK. For (v, w) € (H7(£2))?, we let:

wolrg= 3 meagK|L) (vr —vk)(wr — wg) / o () dx

dxr measDk k. U Dk kL)

K|L&Eint Dk x|LYUDk kL
m VKWK
+ Z 7 a(x)dx.
dkg,c meagDk o)
0 E€ext

DK,U

We define a norm itz (£2) by w7 = ([w, w]l7.1)%? (where 1 denotes the constant function equal to 1). We
define the discrete gradieWtr : H7(2) — H7(2)4, by:

K|L
meask)Vrux = 3 ooty — i)~ wk) = Y

LeNk o €EK ext

measo)
dK,O'

(Xxo — XKWk,

VK € M.
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Fig. 1. Notations for an admissible mesh. Fig. 2. L2 norm of the error as a function of

We consider the finite volume scheme:

ur € Hy(£2),
/(A(x) — a(0)1d)Vrur(x) - Vru) de + [u7, vl7. = / fv()dx, Ve Hr(£2). 3)
2 2

One may prove that there exists a unique solutigrto (3), thanks to the following discreté! estimate:
aollur 7 < diam($2) || fll 2(2ya- (4)

3. Convergence results

Theorem 3.1(Convergence of the finite volume schemegt 7 be an admissible discretization of 2. Let ug €
H7(£2) be the solution to (3). Then u7 converges in L2($2) to the weak solution i to the problem (1), and the
approximate gradient Vyu7 convergesin L2($2)? to Vii, as siz7) — 0 provided that there exists p > 0 with
reguk7) = p.

Remark 1. Note that the present convergence result alsegyithe strong convergence of the present discrete
gradient for the classical finite volume scheme in the isotropic case, which is given by (3/Avhend.

Sketch of proof of Theorem 3.1.From (4), we may extract from any sequence of approximate solutions a subse-
guence which converges to some& Hol(.Q). We shall show below that = i. Thereforex is unique. Hence we
may consider any family of discretizatioiswith requl7") > p, and siz€7) — 0.

Let ¢ € C°(£2), setv = Pre in (3). The keypoints of the proof of convergencewaf and Vyu7 are the
following:

(i) [ur, ProlT o = [oa(x)Vu(x) - Vo(x)dx,
(i) Vzu7 tends tovu weakly in L2(£2)4,
(i) V7 Pretends toVe in L2(2)4.

Stage 1 is developed in [2,1]. Stage 2 may be shown by noting that, thanks to the orthogonatity atnd
K|L, we have

meask |L)
Z (ur — MK)[”K,L / p(x)dy(x) — T((XK\L —xg)pxg) + (xp — xKlL)(P(XL)):| — 0,
K|Le&; KL

int KI|L
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which leads to

/ Pro(x)Vyur(x)dx + / ur(x)Ve(x)dx — 0.
2 Q
Stage 3 is a consequence of the following geometric property: forai1, ..., d,

/div(x(i)e(j))dxzsij meask) = Z measo)xPng o - &),
K

O'GSK

which follows thanks to the choice #f as the center of gravity ef. One then concludes to the convergencepf
thanks to the fact thaf, (A(x) — a(x) 1d)V7u(x) - V7 Pr(x) dx tends tof, (A(x) — a(x) Id)Vu(x) - Vo(x) dx,
and thust = i.

In order to prove the convergencefu;, we consider a regular functigf, and write the following inequal-
ity:

IVTur — Vull 20y < IVTur — Ve Prlp2gye + IVT PTY — VYl 200y + IVY = Vullp2(g)a-

Now, it may be shown thdt7, u717 , tends ton a(x)Vu(x)?dx, as in [4], using weak convergence properties.
Hence we get that

limsup |Vzur — Vr Pryll 2y < CIVY — Vull2(ga.
SizT)—0

Using stage 3, one has

limsup |Vzur — Vull 2oy < (C+DIVY — Vull2(g)a-
siz7)—0

Letting v tend tou in H&(.Q), we conclude.

4. Numerical results

Fig. 2 shows the error between exact and approximate solution as a function of the parafoeteroblem
()with 2 = (0.1 x (0.1, AW = (75 7o
25 x 25 grid. We observe that a minimum is attained for a constant valuéxgfclose to 2, the largest eigenvalue
of A(x). However, the above proof of convergence is only validfag 1, the smallest eigenvalue df(x). Hence
one should aim at proving the convergence for larger values Bbr this same problem, the order of convergence
of the method with respect to the size of the mesh is close to 2 for the solution for both rectangles and triangles,
and 1.5 (resp. 1) for its gradient in the case of rectangles (resp. triangles).

), andii(x) = xM (1 — xD)x@ (1 — x@), using a uniform square
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