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Abstract

A new finite volume for the discretization of anisotropic diffusion problems on general unstructured meshes in an
dimension is presented. The convergence of the approximate solution and its discrete gradient is proven. The efficie
scheme is illustrated by numerical results.To cite this article: R. Eymard et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un schéma volumes finis pour les problèmes anisotropes sur des maillages non structurés.On présente ici un nouvea
schéma volumes finis pour la discrétisation des équations de diffusion anisotropes sur des maillages non structurés, pour toute
dimension d’espace. On prouve la convergence de la solution approchée, ainsi que celle d’un gradient approché. La pertinenc
du schéma est illustrée par des résultats numériques.Pour citer cet article : R. Eymard et al., C. R. Acad. Sci. Paris, Ser. I 339
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Anisotropic diffusion problems are encountered in various scientific fields: geosciences, biology, financ
known discretization methods are finite differences, finite volumes and finite elements. The mathematic
of convergence is quite well known in the case of isotropic diffusion for the three methods, and is the ob
numerous works in the case of anisotropic diffusion; a thorough mathematical theory is known in the finite e
theory. For various reasons, such as the ease of implementation, construction of simple Voronoï meshe
coupling of equations of different kind, finite volumes are often chosen in actual applications. Our aim he
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construct a finite volume scheme for anisotropic problems and prove its convergence towards the solutio
continuous problem. We thus study the following problem: find an approximation of the variational weak s
ū ∈ H 1

0 (Ω) to the following equation:

−div(Λ∇ū) = f in Ω, (1)

with homogeneous Dirichlet boundary conditions, whereΩ is a polygonal open bounded connected sub
of R

d, d ∈ N
∗, andf ∈ L2(Ω). The functionΛ is measurable fromΩ to the set of symmetricd × d real matrices,

the eigenvalues of which are included in[α(x),β(x)] whereα,β ∈ L∞(Ω) are such that 0< α0 � α(x) � β(x)

for a.e.x ∈ Ω .
The track that we follow here consists in building an approximate gradient, using the usual cell value

discrete unknowns. Note that such an approximate gradient was already considered in [3]. However, in t
work, the approximate gradient was constructed using the so-called Raviart–Thomas shape functions.
nately, these functions have simple expressions only in the case of triangles and rectangles. Here, we sha
a new approximate gradient which does not use these shape functions, and which is easy to compute on a
sible finite volume mesh.

2. The finite volume scheme

Let T = (M,E,P) be an admissible finite volume discretization ofΩ in the sense of [2], Definition 9.1, p. 76
An example of two neighbouring control volumesK andL of M is depicted in Fig. 1. The notations are identi
to that of [2].

The size of the discretization is defined by: size(T ) = sup{diam(K),K ∈M}.
The set of interior (resp. boundary) edges is denoted byEint (resp.Eext). For anyσ ∈ Eint, σ = K|L (resp.

Eext, σ ∈ EK ). For all K ∈ M, we denote byNK the subset ofM of the neighbouring control volumes, and w
denote byEK,ext = EK ∩ Eext.

For allK ∈ M andσ ∈ EK , we defineDK,σ = {txK + (1− t)y, t ∈ (0,1), y ∈ σ }. For allσ ∈ E , let xσ denote
the center of gravity ofσ . We shall measure the regularity of the mesh through the function regul(T ) defined by

regul(T ) = inf

{
dK,σ

d(xσ , xK)
,K ∈M, σ ∈ EK

}
. (2)

We denote byHT (Ω) ⊂ L2(Ω) the space of piecewise constant functions on the control volumes. For alw ∈
HT (Ω) and for allK ∈ M, we denote bywK the constant value ofw in K. For any functionϕ ∈ C∞

c (Ω), we
denote byPMϕ ∈ HT (Ω) the piecewise function equal toϕ(xK) on cellK. For (v,w) ∈ (HT (Ω))2, we let:

[v,w]T ,α =
∑

K |L∈Eint

meas(K|L)

dKL

(vL − vK)(wL − wK)

meas(DK,K |L ∪ DK,K |L)

∫
DK,K|L∪DK,K|L

α(x)dx

+
∑

σ∈Eext

mσ

dK,σ

vKwK

meas(DK,σ )

∫
DK,σ

α(x)dx.

We define a norm inHT (Ω) by ‖w‖T = ([w,w]T ,1)
1/2 (where 1 denotes the constant function equal to 1).

define the discrete gradient∇T :HT (Ω) → HT (Ω)d , by:

meas(K)∇T wK =
∑

L∈NK

meas(K|L)

dKL

(xK |L − xK)(wL − wK) −
∑

σ∈EK,ext

meas(σ )

dK,σ

(xσ − xK)wK,

∀K ∈M.
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Fig. 1. Notations for an admissible mesh. Fig. 2.L2 norm of the error as a function ofα.

We consider the finite volume scheme:


uT ∈ HT (Ω),∫
Ω

(
Λ(x) − α(x) Id

)∇T uT (x) · ∇T v(x)dx + [uT , v]T ,α =
∫
Ω

f (x)v(x)dx, ∀v ∈ HT (Ω). (3)

One may prove that there exists a unique solutionuT to (3), thanks to the following discreteH 1 estimate:

α0‖uT ‖T � diam(Ω)‖f ‖L2(Ω)d . (4)

3. Convergence results

Theorem 3.1(Convergence of the finite volume scheme). Let T be an admissible discretization of Ω . Let uT ∈
HT (Ω) be the solution to (3). Then uT converges in L2(Ω) to the weak solution ū to the problem (1), and the
approximate gradient ∇T uT converges in L2(Ω)d to ∇ū, as size(T ) → 0 provided that there exists ρ > 0 with
regul(T ) � ρ.

Remark 1. Note that the present convergence result also gives the strong convergence of the present disc
gradient for the classical finite volume scheme in the isotropic case, which is given by (3) whenΛ = α Id.

Sketch of proof of Theorem 3.1.From (4), we may extract from any sequence of approximate solutions a s
quence which converges to someu ∈ H 1

0 (Ω). We shall show below thatu = ū. Thereforeu is unique. Hence we
may consider any family of discretizationsT with regul(T ) � ρ, and size(T ) → 0.

Let ϕ ∈ C∞
c (Ω), setv = PT ϕ in (3). The keypoints of the proof of convergence ofuT and∇T uT are the

following:

(i) [uT ,PT ϕ]T ,α → ∫
Ω

α(x)∇u(x) · ∇ϕ(x)dx,
(ii) ∇T uT tends to∇u weakly inL2(Ω)d ,
(iii) ∇T PT ϕ tends to∇ϕ in L2(Ω)d .

Stage 1 is developed in [2,1]. Stage 2 may be shown by noting that, thanks to the orthogonality ofxKxL and
K|L, we have

∑
K |L∈Eint

(uL − uK)

[
nK,L

∫
K |L

ϕ(x)dγ (x) − meas(K|L)

dKL

(
(xK |L − xK)ϕ(xK) + (xL − xK |L)ϕ(xL)

)] → 0,
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which leads to∫
Ω

PT ϕ(x)∇T uT (x)dx +
∫
Ω

uT (x)∇ϕ(x)dx → 0.

Stage 3 is a consequence of the following geometric property: for alli, j = 1, . . . , d,∫
K

div
(
x(i)e(j)

)
dx = δij meas(K) =

∑
σ∈EK

meas(σ )x(i)
σ nK,σ · e(j),

which follows thanks to the choice ofxσ as the center of gravity ofσ . One then concludes to the convergence ofuT
thanks to the fact that

∫
Ω

(Λ(x)−α(x) Id)∇T u(x) · ∇T PT ϕ(x)dx tends to
∫
Ω

(Λ(x)−α(x) Id)∇u(x) · ∇ϕ(x)dx,
and thusu = ū.

In order to prove the convergence of∇T uT , we consider a regular functionψ , and write the following inequal
ity:

‖∇T uT − ∇u‖L2(Ω)d � ‖∇T uT − ∇T PT ψ‖L2(Ω)d + ‖∇T PT ψ − ∇ψ‖L2(Ω)d + ‖∇ψ − ∇u‖L2(Ω)d .

Now, it may be shown that[uT , uT ]T ,α tends to
∫
Ω α(x)∇u(x)2 dx, as in [4], using weak convergence properti

Hence we get that

lim sup
size(T )→0

‖∇T uT − ∇T PT ψ‖L2(Ω)d � C‖∇ψ − ∇u‖L2(Ω)d .

Using stage 3, one has

lim sup
size(T )→0

‖∇T uT − ∇u‖L2(Ω)d � (C + 1)‖∇ψ − ∇u‖L2(Ω)d .

Lettingψ tend tou in H 1
0 (Ω), we conclude.

4. Numerical results

Fig. 2 shows the error between exact and approximate solution as a function of the parameterα for problem

(1) with Ω = (0,1) × (0,1), Λ(x) = ( 1.5 0.5
0.5 1.5

)
, andū(x) = x(1)(1− x(1))x(2)(1− x(2)), using a uniform squar

25× 25 grid. We observe that a minimum is attained for a constant value ofα(x) close to 2, the largest eigenval
of Λ(x). However, the above proof of convergence is only valid forα � 1, the smallest eigenvalue ofΛ(x). Hence
one should aim at proving the convergence for larger values ofα. For this same problem, the order of converge
of the method with respect to the size of the mesh is close to 2 for the solution for both rectangles and tr
and 1.5 (resp. 1) for its gradient in the case of rectangles (resp. triangles).
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