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Abstract

It is proven that for families of holomorphic maps with simply cented immediate quadratic basj the effective level sets
of the Schrdoder or linearizing coordinates converge to the level sets for the Béttcher map, when the multiplier converges to 0. In
particular the effective Schroder level sets @y (z) =1z + 2 converge to circles with center 0 as—»> 0. To citethisarticle:
C.L. Petersen, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Quand Schroder rencontre Bottcher. On montre que pour les familles d’applims holomorphesgjui ont des bassins
immeédiats quadratiques et simplement connexes, les ensembles de niveau effectifs de I'application linéarisante de Schrode
convergent vers les équipotentielles des coordonnées de Bogeherd le multiplicateur tendevs zéro. En particulier pour
la famille des polyndmes quadratiqués (z) = Az + z2 les ensembles de niveau «effectifs » de Schréder convergent vers les

cercles centrées en zéro, lorsque> 0. Pour citer cet article: C.L. Petersen, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let f: 2 — C, £2 c C be a holomorphic map. Supposes £2 is an attracting fixed point fof’ with imme-
diate attracted basiB; = B («). We shall say thaB is a simple proper basin By ~ I and the restriction
f:By — By isaproper map. Laf > 1 be the degree of the restriction. We cBll a (simple) quadratic resp. cu-
bic basin ifd = 2 respd = 3. In the following we consider only simple proper basins. We denotesyf’'(0) € D
the multiplier of f at«. For a thorough introduction to the theory of iteration see e.g. Milnors monograph [1].

When = 0 there exists a Bottcher coordinate ffy a univalent mag s : U — V such thatg s («) =0 and
prof= (¢f)", wherek is the local degree of at«. The germ of¢ s is uniqgue modulo multiplication by a
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(k — 1)-st. root of unity. The Bottcher potential ¢fis the subharmonic functioby (z) = log|¢ s (z)| extended to
By by the recursive relatioh - k7 (z) = k¢ (f (z)). The Bottcher coordinat¢ s extends to a biholomorphic map
or: U} — D(¢), where either =0, U} = By andk =d or BU} contains at least one critical poiny with
sz (Cf) =1.

Whena # 0 there exists a linearizer or Schroder coordinateffon B ;. Thatis a holomorphicmap: By — C
with ¢ o f = A - ¢ and¢’(a) # 0. Such a map is unique modulo multiplication by a non zero complex number. Let
UJQ denote the maximal domain which containsnd which is mapped univalently onto a round dixi¢). Then

aU? contains a (possibly severdi)st attracted critical pointc with |¢(c)| = r. For a choice of critical point
with ¢ (cy) # 0, we denote by, the linearizer withp (¢ ;) = 1. Forc a first attracted critical point we denote
by ¢ 7D — UJQ the univalent inverse af .

Supposef = fa andag depend complex analytically on some paramaterM, where M is some complex
analytic manifold. If the local degrele, at a5 is constant and moreover in case the degree is 1 the critical point
¢y = ca also depends complex analytically anthen the mapa = ¢ £, (BOttcher or linearizer) depends complex
analytically on(a, z) for a sufficiently close tayg.

The level sets fop ¢ are the sets on whidk ¢ (z)| is constant. These are conveniently discussed via the potential
function. Fori € D* definek s : By — [—o0, co[ by k¢ (z) = —(logl¢ s (2)]) /log|A], so thatk s (f(2)) =k r(z) — 1.

The functionk y is subharmonic with poles at the iterated preimages difis unique modulo an additive constant,
which we have fixed so that;(cs) = 0. The critical points ok ; are the critical points; of f in By and their
iterated preimages. The critical values are the numbgis) +n, n € N, and includes in particular the non negative
integersN.

When a proper basin contains a critical poin# « the level sets are neither nested nor connected. This mo-
tivates the notion of essential level sets (defined for both Béttcher and Schroder coordinates)RAet U r (1)
denote the connected component??fl([—oo, t[) containing 0. Then the set$;(7) are nested Jordan domains.
TheMilnor filled potentialis the function, defined by

kp(z) = inf{s |z € Uf(s)}.
The essential level setd f are the level set& /(1) = ;cjtl(t), t € R of ky. Each (essential) level set has the
homotopy type of a circle and bountlg (¢). Itis a Jordan curve iff is not a critical value fok ¢ . It even has interior
if 7 is a critical value. Note thalt/ s (1) = K;l([—oo, t]). Definethe equilevel setof € By: L(z) = K;l(/cf (2)).

As a first and principal example consider the quadratic polynon@lalg) = Az + z2, with & = 0. To reduce
notation we use the index synonymously withQ, for the above defined entities. We shall in this special case
extend the notion of equilevel seis (z) to include the Julia sel, as the equilevel set of Julia points and each
equipotential set for the Bottcher coordinatexatas the equilevel set of its points.

Let dc+(-, -) denote the complete euclidean metric ©h normalized such thadlc+ (€7, €*) < |z — w| with
equality iff I(z — w) < . Denote byDc+(-, -) the Hausdorff distance on the space of compact subsefs of
induced bydc+(-, -) and denote byD(., -) the standard Hausdorff distance between compacts ddoreover for
r > 0 defineCo(r) ={z | |z| =r}.

Theorem 1.1. For the quadraticsQ, ande > 0: D¢« (L (2), Co(IZI))A—BO uniformly onC \ D(¢). Moreover
sup D¢+ (L, (z), Co(|z]))|z € C*} A_BZ log(+/2+ 1). In particular D(L;(z), Co(lz])) A_BO uniformly onD*.

Lemma 1.2. For Q; and max{|a|, [A|™"} < 3: Dc+(Ki.(1), Co(3111Y")) < 6max|Al, || ~'}. Moreover for any
0 <10 < 1: sudDc+ (L (z), Co(lz])lxa(z) < to} ‘702 log(v2+ 1) < log6.

Proof. We havekK; (1) = dU, (1) = ¥, (Co(|A| ")), because in generak 9 K, (r) implies|¢, (z)| = |A|~'. The first
statement is then immediate from the Kébe distortion estimates for univalent maps and the fagtthat —%AZ
(the point—;llk2 is the critical value 010,).
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Let ¢(z) = 2z — z2 and for O< r denote bys(r) the connected component gf 1(Co(r)) surrounding 0.
An easy exercise in Calculus shows thag:(5(r), Co(|z])) < 2log(v/2 + 1) for any z € §(r). The restric-
tion ¢;.: Us.(1) — D(JA|~1) has a unique univalent lift;, : U; (1) — ¢~ 1(D(Ar|~1)) with 6,(0) = 0. The second
statement hence follows from the Kolokstortion estimates applied t@fl, because the conformal modulus
m(U; (1) \ Us(to)) = (1o — 1) log|A|/(27) 0 O

Proof of Theorem 1.1. Define X, (t) = C \ K/\_l([—oo, t]) so thatQ, : X, (t) - X, (t — 1) is proper of degree 2
and branched only at and aboxe, whenr > 0. Define recursively:, = hﬁ :2m)—>C,n>—-1byh_1(z) =

z and Qo o (hp+1(2)) = hu(Q1(2)), With h,(z)/z — 1 asz — oo. Then Qg o hy—1 = Q% on Xy (n — 1). By
Lemma 1.2 there exists9 8¢ < 1/6* so small thati| < 8o implies:

Vie[-3 3], Vi€ Ki(®): De+(Ki(0), Co(lz])) <log6 and 1)

Dc+ (KA (-%) COGMF’/Z)) < |og<g). (2)

We shall prove that for alt > 0 and for allz € 5 (n + 3)
des (7 (2), z) < BIA[Y4, 3)

The theorem is an easy consequence of (3) and (1), because? is uniformly infinitesimally expanding
with a factor 2 fordc+, so that for any compact se&t C C* andz € Q" (K), Dc+(Qq" (K), Co(lz]) =
27" De+ (K, Co(| 0 (2)])) and becausg—3, 31 is a fundamental set of potentials adz) — oo as|A| — oo
(as Q; converges locally uniformly t@o and K, (0) — 0 by Lemma 1.2).

For |A] < 8o a brief computation shows that| < 3|A1%/* implies |0;.(z)| < 3IA1%/2 so thatQ;.(2) € Us.(—3)
by (2), thusz € U;.(3). Hencex; (3) c T\ DA ¥/4.

For|z| > |A| definea}(z) = 3 Log(1+1/z) thenio(z) = zexplefy (z)) and|la || < 3[a1Y/4 on X (3). Definew;;
recursively onx; (n + %) by oz}lH(z) = %aﬁ(QA(z)) + a4 (2). Then by inductiori, (z) = zexpl;) (z)). Moreover
likewise by inductionj|e* || < 6]1|%* which proves (3). O

Consider complex analytic (parametric) families of holomorphic m@ps) — fh(z) : A x M x 2 — C,
whereb = (A,b) € A x M, f,(0) =0 and fg(O) =i, A CDand$2 c C are connected neighbourhoods of
the origin andM is a complex analytic manifold. The family}, is said toadmitO as a quadratic fixed point
if the immediate attracted basi, = By (0) are all simple quadratic. Examples of such families are abundant
among polynomials, e.g. the famil9, above and among rational maps, entinel &ranscendental maps etc. Let
¢p : Bp — D resp.C denote the Bottcher coordinate f¢iy, wheneven = 0 and the Schréder coordinate mapping
the unique critical pointy, in By to 1, wheni # 0. Then the composite map; o ¢y, is a local conjugacy of
fo to O, and preserves critical values (take = id, wheni = 0). It extends to a holomorphic in infact unique

biholomorphic conjugacyy, : By it B;.

Corollary 1.3 (of Theorem 1.1)For any complex analytic family,, admitting0 as a quadratic fixed poing{i) The
map (b, z) — np(z) is complex analytic o/ = {(b,z) | z € Bp}, (ii) the mapb — (Bp,0) is Caratheodory
continuous and(iii) For any bg = (0, b), for any compact subsek C By, \ {0} the Hausdorff distance
D¢+ (Lp(z), Lpy(z)) ;60 uniformly forz € K.

Proof. Both (i) and (ii) hold whem. # 0, because boti, and i, are complex analytic. Fiko = (0, ) and let
(Kn), be an exhaustion aBy, (i.e. |, K» = Bp,) With K, @D and K,,_1, fb,(K,x) CC K, for eachn. There
exist neighbourhoods, ¢ A x M of bg such thatk,, C By for everyb € w,. It follows that for each: the set
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of pointed regiong By, 0), b € w, is relatively compact an@ > By, for any limit point (U, 0) of a convergent
sequencéBy,, 0), whereb, — bg asn — oo. Also the sequencgy, : By, = B,, converges to a Riemann map

n:U = D of U with o fo, = Qo o 7). Hencen = ¢y, andU = By, by uniqueness of Bottcher coordinates. From
the continuity ofy the rest of the corollary follows. O

2. An application

Consider cubic polynomialBa(z) = Az + az® + z°3, where(x, a) =: a € C2. DefineH = {a| » e D and B, =
Ba(0) contains both critical poinjsand defineH§ = {(0, @) € H | a # O}.

Fora e Hj let na=¢a: U& — D(€2), be Bottcher coordinate with, = ;éa(cell), Wherecé # 0 is the second
critical point. Similarly fora € H with » € D* let ¢4 be the (a) Schrdder coordinate normalizedmng) =1,
wherecd is the (a) first attracted critical point. Lek denote the other critical point and define= «a(c}) and
Ug = Uj(ta). Suppose, > 0, so that the first attracted critical point is unique. kgt Ua1 — U, (t3) denote the
unigue univalent conjugacy betwe®@gandQ; obtained by iterated lifting of the conjugagy o ¢5. Then as above
the map(a, z) — na(z) is complex analytic, whehn # 0. Define the equilevel sét;(z) as in the introduction and
seti = {(a, z) | z € Ua and eithem € Hg or (A € D* A 13 > 0)}. The following theorem has been applied in the
paper [2].

Theorem 2.1. The mapn(a, z) = na(z) is complex analytic oi/. In particular for everyag € Hj: Dex(La(z),
Lay(2)) ;)oo uniformly on compact subsets B, \ {0}.

Proof. ForU c C an open subset containing 0 defin®) = sup(r | D(r) C U}. The proof of the following claim
is an easy corollary of Theorem 1.1 and is left to the reader:

Claim. For everyrg €10, 1] there exist$ > Osuch thatforallx| < § and every € R withr (U, (¢)) < ro the subset

Us.(t — 3) is contained inDy, (0, 2 log iﬁ) the hyperbolic ball iU () with center0 and radius2 log f_rﬁ

A simple calculation shows that,(0) — ap asa — ap € H{. Fix ag € 1, then there existg > 0 ands > 0
such tharr(Ug) > ro for all |a— ap| < é. Suppose to the contrary the(tUaln) — 0 for some sequencg, — ag.
Then alsor (U, (ta)) — 0, by the dee;ll-theorem. But ther/,(t4 — %), which containsvg converges Hausdorff
to {0} by the claim, this contradicts thag — U;O # 0. Hence the pointed regiori&/1, 0) are precompact for the
Caratheodory topology. Lety,) be a sequence convergingdg. Passing to a subsequence we can suppose that
(U2, 0) converges Caratheodory to a pointed redion0) and that the conjugacies, : Ua}n — U,,, (ta,) CONverges
locally uniformly to7a,: U — D(€') a uniformizing map which conjugaté®, to Qo. Hencerja, = ¢a, = 17a, ON
U andrq, is continuous ofag) x U. Also r < 13 = ka,(c3,), becauseiq, is univalent, so thal/ C U, . Finally
t =13 aS|na, (Pa, (c3,))| = |18, (v} )| — €, so thatl = U} . From the continuity the theorem follows o
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