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Abstract

Let L(s, 7, r) be anL-function which appears in the Langlands—Shabhidi theory. We give a lower bouidsfor, r) when
9 (s) = 1 using Eisenstein series. This method is applicable even wiemnt, r) is not known to be absolutely convergent for
NR(s) > 1. Tocitethisarticle: S.S. Gelbart et al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Unenouvelle méhode pour minorer desfonctions L. Soit L (s, 7, r) une fonctionL présente dans la théorie de Langlands—
Shahidi. Nous prouvons une minoration fiés, 7, r) quandfi(s) = 1, en utiliant les séries d’Eisenstein. Cette méthode
s’applique méme lorsqu’on ne sait pas due, =, ) est absolument convergente pot®) > 1. Pour citer cet article: S.S. Gel-

bart et al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In 1899, de la Vallée Poussin extended his method ofipgpthe Prime Number Theorem to showing that the
Riemann zeta function has a zero-free region of the form

e
{”"' o1 Iog(|r|+2)}
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for ¢ an absolute positive constant, or, what is essentially equivalent,
C
1+in)|>—, 22 1
lc(@+in)| ogi (1)

Such lower bounds (and more) are expected to hold for any automdrghiaction.

From a modern point of view, the method of de la Vallée Poussin is based on Rankin—Selfsrctions
and a positivity argument (an effective version of Landau’s Lemma — see [3, Appendix]). As pointed out in [12]
and [14], it can be applied to any Rankin—Selb&rfunction L (s, 71 ® 72) provided that one of the;’s is self-
dual Herer;, i = 1,2 are cuspidal automorphic representations of, @G.r) (for any number fieldF’) whose
central characters are trivial d&, imbedded diagonally in the (archimedean) idéles. The zero-free region takes
the form

C

1- ;
109(Qx, O, (1] +2))

with ¢ an explicit constant depending only on thés and F; hereQ, is the “analytic conductor” ofr; (see [5]).
In particular, we have such a standard zero-free regioi. §orm) for any cuspidal representatianof GL, (Ar).
Thus, in principle, Langlandsuhctoriality yields a standard zefgee region for any automorphic-function.
We note that providing a similar effective zero-free regionfer 0 whenL(s) = L(s, x) with x a Dirichlet
character is a major unsolved problem. See ¢4} discussion of Siegel zeros in this setting.
If the ;’s are not assumed to be self-dual then Brumlgy¢tently established a acse zero-free region

C
Qg Oy (1] +2))N

(for any t) where agaire, N depend (explicitly) only om1, ns. Brumley’s method also uses Rankin—Selberg
theory and a positivity argument. Among other things, it has applications to the absolute convergence of the spectra
side of Jacquet's relative trace formula [10].

11 >1

o>1

2. The new method

In [14] the third-named author explains how to obtain a slightly weaker form of (1) by quite a different method,
using Eisenstein series on SlThe argument exploits the Maass—Selberg relations and the computation of Fourier
coefficients of Eisenstein serigSomparing the two by Bessel's inequality gives a coarse lower bound for zeta.
This can be viewed as an effectuation (foe 1) of the non-vanishing result of Jacquet—Shalika for the standard
L-function of cusp forms on Gl(Ar) at %i(s) = 1 [6]. (To obtain a better bound in the spirit of (1), a deeper
analysis using an elementary sieve method is required.)

In this note we explain the generalization of the method above to the higher rank case, yielding lower bounds
for any of theL-functions appearing in Langlands’ formula for the constant term of Eisenstein series. Details will
appear in a forthcoming paper of the two first-named authors.

3. Eisenstein seriesand L-functions

Let G be a reductive group over a number fieldand let P be a maximal parabolic subgroup over
with Levi decompositionP = MU. Let w be the fundamental weight correspondingRo For any cuspidal
¢ € AM(F)U(Ar)\G(AF)) (suitably normalized undet ;) we consider the Eisenstein serié&, ¢, sw), g €
G(AF), s € C. (See [11] for unexplained notation.) Letbe a cuspidal automorphic representationafd ) and
suppose that — ¢(mk) belongs to the space af for all k € K. Then the constant term @&(-, ¢, sz) along P
is expressed in terms of the intertwining operator which is in turn given, up to a finite number of local factors, by
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ﬁ L3(js, 7, r))
-1 LS(1+ js,7,r))
for sufficiently largeS [9]. Here @;”zl rj is the decomposition of the adjoint representatiort 8f on the Lie

algebra of- U into irreducible constituents, indexed by the terms in the lower central sertd$,andL5 (s, 7, r;)
denotes the corresponding (partiabfunction.

4. Finitenessof order

By a result of Muller [13, Theorem 0.2] there exists an entire functags) of finite order such that
q(s)E(g, ¢, s) is entire and of finite order for al} € G(Ar). This fact and Langlands’ formula imply, using
induction and a little complex analis, the following Theorem.

Theorem 4.1. EachL(s, 7, r;) is of finite order(as a meromorphic functign

We note that a similar result holds for otheffunctions which admit an integral representation.

5. Genericrepresentations

In order to generalize [14] it is necessary thabegeneric Suppose from now on that (or equivalentlyM) is
quasi-split and let) be a non-degenerate charactetigf F)\Uo(A r). We will henceforth assume that r; and
S are all fixed, thatS contains the archimedean places and that generic with respect to the restriction pfto
Uo N M. Then, by the “Langlands—Shahidi method” theth Fourier coefficient ofE (-, ¢, s@) is given, up to a
global constant and local Jacquet integrals, by

m -1
[]‘[ LS+ js, 7, rj)} :
j=1
Moreover, Shahidi has obtained an exact functional equatiod. ey, r;) and proved finiteness of poles for
the partialL-functions [16]. Invoking a standard argument usihg Phragmen-Lindelof principle we deduce the
following proposition from Theorem 4.1.
Proposition 5.1. There exists a polynomid(s) such that for everyg < s1 there exist constants n > 0 such that
|P)LS (s, 7, rj)| < c(L+1sl)" )

in the stripR = {s € C: so < N(s) < s1} and similarly for the derivative of.S.

This proposition sharpens and simplifies the main tesU]. We point out that a similar result ought to hold

for other automorphid.-functions (even for non-generic represermas) which admit integral presentations (of
Rankin—Selberg type). This would have an important egognce in the application of the converse theorem.

6. Themain result

Theorem 6.1. There exist constants n > 0 such that
|ILS@+it,mrp|=c(@+12)", 11> j=1...,m.
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This theorem answers in a strong form a conjecture posed in [2]. It implies a similar zero-free region for
L(s,m, ;). The proof of Theorem 6.1 is based, as in the Sase, on estimating (fore iR) ||AT E(-, ¢, sw)||§
from above by the Maass—Selberg relations, and from below by squares of Fourier coefficients. The crux of the
matter is the non-homogeneity of the ensuinggimaity. We remark that the non-vanishing bf (1 + iz, 7, ri),
t # 0 was proved by Shahidi [15].

Let nowr be a cuspidal representation of &K ). Applying Theorem 6.1 for the exceptional groGp= Eg
and using the third and fourth symmetric power liftingswof8,7] we obtain:

Corollary 6.2. There exist constants n > 0 such that for allr € R with |¢] > 1

LS(1+it, . syn?) > — S
( Y) >

Interestingly enough, it is not known whethgf (s, 7, syn?) converges absolutely fok(s) > 1 or if it has
zeros or poles i1, co). Thus, clearly, Corollary 6.2 lies beyond the scope of the method of de la Vallée Poussin
and Theorem 6.1 contains all the cases of such non-vanishing proved by the last method as special cases. Anoth
consequence of Theorem 6.1 is to uniform upper bounds of Eisenstein series.

Theorem 6.3. There exist constants n such that for allg € G(Ar) ands €iR

|E(g.@.9)| <c- (1+gl)" - (1+1s])".
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