Available online at www.sciencedirect.com

S(:IEN(:E(&DIRECT0

—__COMPTES RENDUS

ELSEVIER C. R. Acad. Sci. Paris, Ser. | 339 (2004) 1-4

Combinatorics/Algebraic Geometry
Specializations of Grothendieck polynomials
Anders S. Buch, Richard Rimany?

a Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Arhus C, Denmark
b Department of Mathematics, The University of North Carolina at Chapel Hill, CB #3250, Phillips Hall, Chapel Hill, NC 27599, USA

Received 5 September 2003; accepted after revision 5 April 2004
Available online 28 May 2004

Presented by Jacques Tits

Abstract

We prove a formula for double Schubert and Grothendieck polynomials, specialized to two re-arrangements of the same set o
variables. Our formula generalizes the usual formulas for Schubert and Grothendieck polynomials in terms of RC-graphs, and
it gives immediate proofs of many other important properties of these polynomiedge thisarticle: A.S. Buch, R. Riméanyi,

C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Spécialisation de polynébmes de Grothendieck. On démontre une formule pour les polyndmes de Schubert et de
Grothendieck dans le cas de réarrangements du méme ensemble de variables. Cette formule généralise les formules usuel
pour ces polyndmes en termes de RC-graphes et donne des démonstrations immédiates de plusieurs propriétés importantes

ces polyndmesPour citer cet article: A.S. Buch, R. Rimanyi, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Letv, w € S, be permutations and I&%,,(x; y) and®,,(a; b) denote the double Schubert and Grothendieck
polynomials of Lascoux and Schitzenberger [15]. The godlisfrtote is to prove a formula for the specializations
of these polynomials to different rearrangements of the same set of variables. For example

Sy y) = Gw()’v(lﬁ e Yu)s Y1 eees Yn)-

The double Schubert polynomial,, (x; y) represents the class of the Schubert varietyufoin the torus-
equivariant cohomology of SIC)/B. The specializatio®,, (y,; ¥) gives the restriction of this class to the fixed
point corresponding to [9, Theorem 2.3]. Equivalently&,, (x; y) represents the class of an orbit in tBex B-
equivariant cohomology of"*" [8,4,10], and&,,(y,; y) is the restriction of this class to another orbit, i.e. an
‘incidence class’ in the sense of [19]. Specialized Grothendieck polyno#jals, ; b) have similar interpretations
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in equivariantk -theory. Both kinds of polynomials also show uptiansition matrices between natural bases of
Hecke algebras [12,16,17,14]. For example, the operator on polynomials thatymiaps, ;) for all i is equal

to Y, Swy; y) 0w, Whered,, is a divided difference operator [1Proposition 3.2]. Some ways to compute
specialized Schubert and Grothendieck polynomials using operators on polynomials are furthermore suggeste
in [14].

The formula proved in this Note generalizes the usual formulas for Schubert and Grothendieck polynomials in
terms of RC-graphs [6,5,1,11], and it furthermore gives immediate proofs of several important properties of these
polynomials, some of which have natural proofs in the above interpretations. We include a characterization of the
Bruhat order [13,17,9], the existence and supersytnymd stable Schubert and Grothendieck polynomials [6],
and the statements about Schubert and Grothendieck polynomials needed in [3] and [2]. The proof of our formula
relies on Fomin and Kirillov’s constrtion of Grothendieck polynomials [5].

2. Themain theorem

Consider the diagram®, consisting of hooks of lines going due north and due west from the pQitts, j),
and with each such hook labeled by ;). For example, when = 264 135 we get:

by bs by by b3 bs
171:’7J
b

9, = b3

by

bs

bg

We letC(®,) denote the crossing positions of this diagram, i.e. the peinj$ such thaw(j) > i andv=1(i) > j.
Notice thatC(®,) = D(v_1) with the notation of [18, p. 8]. Foti, j) € C(D,) we letv(i, j) be one plus the
number of hooks going north-west @f j) in the diagran®,, i.e.v(i, j) = j + #k > j: v(k) < i}.

We need thalegenerate Hecke algebra, which is the freeZ-algebraH generated by symbols, s», . .., modulo
the relations (i)s;s; = s;s; if [i — j| > 2, (ii) sisi118 = si+15i5i+1, and (iii) sl? = —s;. This algebra has a basis of
permutations.

For a subseD C C(®,), consider the product it/ of the simple reflections,; ;) for (i, j) € D, in south-west
to north-east order, i.e,; ;) must come before, ; if i >i" and; < j’. This productis equal to plus or minus
a single permutation (D). We say thatD is aFomin—Kirillov graph (or FK-graph) for this permutation w.r.t. the
diagram®,, and thatD is reduced if | D| equals the length ab (D).

An FK-graphD can be pictured by replacing the crossing position® gfwhich belong toD with the symbol
“ =, while the remaining crossing pi®ns are replaced with the symbol~’. If D is reduced then the string
entering the resulting diagram at columpiat the top will exit at ronw (D) () at the left-hand side.

Our main result is the following theorem, which is proved combinatorially in the next section. It is natural to
ask for a geometric proof as well.

Theorem 2.1. For permutations v, w € S, and variables b1, ..., b, we have

Gy (by;b) =Y (=PI T (1_ b; )
D by(j)

(i,j)eD

where the sumis over all FK-graphs D for w w.r.t. ©,,.

Corollary 2.2. For v, w € S, and variables y1, ..., y, we have &y, (yv; ) = > [ jyep vy — ¥i) Where the
sumisover all reduced FK-graphs D for w w.r.t. ©,,.
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Corollary 2.3. The usual formulas for double Schubert and Grothendieck polynomialsin terms of RC-graphs are
true (see[6,5,1,11])

Proof. Apply the theorem t@,, (a1, ...,an,b1,...,by; b1, ..., by, a1,...,a,). 0O

The next corollary recovers the characterization of the Bruhat order proved in [13, Corollary 3.2] (cf. [17,
p. 171]) and [9, Theorem 2.4].

Corollary 2.4. Let v, w € S,,. The following are equivalent: (1) w < v in the Bruhat order. (2) &y (yy; y) # 0.
(3) &uw(by; b) #0.

Proof. The product defining (C(®,)) is areduced expression forThere exists a reduced FK-graphc C(9,)

for w if and only if w equals a reduced subexpression of this product. The later is equivalen&to. This
shows that each of (2) and (3) imply (1) (these implicas are clear from geometry, too). It is also clear that
(2) implies (3). To see that (1) implies (2), notice thatiifj) € C(©,) theni < v(j). Therefore each reduced
FK-graphD for w in Corollary 2.2 contributes a positive polynomial in the variahles yi+1 — y;. O

The following corollary implies that stable double Schubert and Grothendieck polynomials exist and are
supersymmetric [20,15,6,5].

Corollary 2.5. Let w € S,, and m < n. Then we have

Guw(Cly vy Cmy Qmtly ey ns Cly v oy Cmy bint1, ..., by)
. [6u(am+1, eeyAny bpa1, ..., by) i w=21" x u for someu,
0 otherwise.

Proof. Apply the theoremt@®,,(c,a,b; c,b,a). O

It was proved in [4, Proposition 4.1] that the Schubert polyno@igly,; y) is a product of linear factors. This
also follows from the viewpoint of [12,16,17], or from Theorem 2.1.

Corollary 2.6. For v € S, we have &, (by; b) = [T jeco,) (1 — %)'
Corollaries 2.4 through 2.6 above include all the facts about Schubert polynomials required in [3]. We remark
that Corollary 5.1 and Proposition 9.2 of [2] are also special cases of our theorem.

3. Proof of Theorem 2.1

Let R be the ring of Laurent polynomials in the variablgsandb;, 1 <i <n. Forc € R we seth;(c) = (1 +
(1—-0¢)s;)) e H® R. As observed in [5], these elements satisfy the Yang-Baxter idenijties: ; (d) = h j(d)h;(c)
for i — j| = 2; hi(c)hi(d) = hi(cd); andh; (c)hit1(cd)hi(d) = hi+1(d)hi(cd)hit1(c).

For p > ¢ we furthermore setAf,(c; k) = hik—14p(bp/Ohi—14p-1(bp_1/C) - --hi_144(bg/c) and define,
following [7] and [5, (2.1)], the produad™ (a; b) = AL | (a1; DAL ,(a2;2)---Al@y-1;n — 1) e H®R.

Fomin and Kirillov have proved that the coefficient of each permutation S, in & (a; b) is equal to the
Grothendieck polynomia®,, (a; b) (see Theorem 2.3 and the remark on page 7 of [5], and use the change of
variablesy; =1 — ai‘l andy; = 1 — b;). We claim that the specializatiah™ (b, ; b) is equal to the south-west to
north-east product of the factalis ;) (b;/by(;)) for all (i, j) € C(D,).



4 A.S Buch, R Rimanyi / C. R. Acad. Sci. Paris, Ser. | 339 (2004) 1-4

By descending induction ap, the above Yang—Baxter identities imply th@(c; k— 1)Aj’7_1(d; kYhgii—2(c/d) =
Al(d; k- 1)AZ_1(c; k), from which we deduce that, for k <n — p, we have4,’1’fl+1(bp; k—DAL  (ap; k) =
A,’;fklﬂ(ak; k— 1)A11)_1(ak; k)Afl’fkl(b,,; k). By using this identity repeatedly, and settifig= (a2, ..., a,) and
b=(b1,...,bp_1,bps1,...,b,), we obtain that

n—1
~ 1
6" by, b) = A}_1(bp; DAY (b D[ | Ab_s(ars k)
k=2

n—p n—1
= Ay _1(bp; ) ( [TA2 s as k= 1) AL (@ k) ( [T Antas k))

k=2 k=n—p+1
= A} 1(bp: D(1x 8" V(@ b)).

Here “1x” is the operator ori{ ® R which maps; to s; 41 for all i. By settingp = v(1) anda = (by2), - - ., bym)),
the above claim follows by induction, and Theorem 2.1 is an immediate consequence of the claim.
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